
Spring	android	tutorial

http://foaptoa.com/c3?utm_term=spring+android+tutorial

You	already	know	that	building	APIs	with	Spring	Boot	is	incredibly	easy.	But,	your	API	isn’t	complete	without	a	UI,	right?	Well,	building	UIs	with	Ionic	is	pretty	easy	too,	especially	if	you	know	Angular!	Ionic	is	an	open	source	framework	designed	to	help	you	build	mobile	applications	with	web	technologies.	It	started	out	as	a	framework	based	on
AngularJS.	Ionic	3.0	was	recently	released,	with	support	for	Angular	4,	TypeScript	2.2,	and	lazy	loading.	When	developing	an	Ionic	app,	you’ll	use	Angular	and	have	access	to	native	APIs	via	Ionic	Native	and	Apache	Cordova.	This	means	you	can	develop	slick-looking	UIs	using	the	technologies	you	know	and	love:	HTML,	CSS,	and	TypeScript.	This
tutorial	will	show	you	how	to	build	a	Spring	Boot	API	and	an	Ionic	app,	and	then	how	to	deploy	the	finished	product	to	your	iOS	or	Android-based	mobile	device.	Together,	these	technologies	provide	an	excellent	developer	experience,	with	hot	reloading	so	you	see	immediate	feedback	whenever	you	change	files.	Prerequisites:	Java	8	and	Node.js
installed.	Create	a	New	Spring	Boot	Project	To	begin,	create	a	directory	on	your	hard	drive	called	spring-boot-ionic-example.	During	this	tutorial,	you	will	create	server	and	ionic-beer	directories	to	hold	the	server	and	client	applications,	respectively.	Build	a	Spring	Boot	API	I	recently	wrote	about	how	to	build	a	Spring	Boot	API	in	Bootiful
Development	with	Spring	Boot	with	Angular.	Rather	than	covering	that	again,	you	can	clone	the	existing	project	and	copy	the	server	directory	into	spring-boot-ionic-example.	git	clone	cp	-r	spring-boot-angular-example/server	~/spring-boot-ionic-example/.	This	project	contains	a	beers	API	that	allows	you	to	CRUD	a	list	of	beer	names.	It	also	contains	a
/good-beers	endpoint	that	filters	out	less-than-great	beers.	A	BeerCommandLineRunner	class	creates	the	default	list	of	beers:	@Component	class	BeerCommandLineRunner	implements	CommandLineRunner	{	private	final	BeerRepository	repository;	public	BeerCommandLineRunner(BeerRepository	repository)	{	this.repository	=	repository;	}
@Override	public	void	run(String...	strings)	throws	Exception	{	//	Top	beers	from	Stream.of("Kentucky	Brunch	Brand	Stout",	"Good	Morning",	"Very	Hazy",	"King	Julius",	"Budweiser",	"Coors	Light",	"PBR").forEach(name	->	repository.save(new	Beer(name)));	repository.findAll().forEach(System.out::println);	}	}	The	BeerRepository	interface	is
decorated	with	@RepositoryRestResource	to	expose	CRUD	endpoints	for	the	Beer	entity.	@RepositoryRestResource	interface	BeerRepository	extends	JpaRepository	{}	The	last	piece	of	the	API	is	the	BeerController	that	exposes	/good-beers	and	specifies	cross-origin	resource	sharing	(CORS)	settings.	@RestController	public	class	BeerController	{
private	BeerRepository	repository;	public	BeerController(BeerRepository	repository)	{	this.repository	=	repository;	}	@GetMapping("/good-beers")	@CrossOrigin(origins	=	"	")	public	Collection	goodBeers()	{	return	repository.findAll().stream()	.filter(this::isGreat)	.collect(Collectors.toList());	}	private	boolean	isGreat(Beer	beer)	{	return
!beer.getName().equals("Budweiser")	&&	!beer.getName().equals("Coors	Light")	&&	!beer.getName().equals("PBR");	}	}	You	should	be	able	to	start	the	server	application	by	running	it	in	your	favorite	IDE	or	from	the	command	line	using	mvn	spring-boot:run.	You’ll	want	to	do	this	from	the	server	directory.	If	you	don’t	have	Maven	installed,	you	can
use	the	Maven	wrapper	that’s	included	in	the	project	(./mvnw	spring-boot:run).	After	the	app	has	started,	navigate	to	.	You	should	see	the	list	of	good	beers	in	your	browser.	Create	an	Ionic	App	To	create	an	Ionic	app	to	display	data	from	your	API,	you’ll	first	need	to	install	Ionic	CLI	and	Cordova:	npm	install	-g	ionic	cordova	The	Ionic	CLI	is	a
command-line	tool	that	significantly	reduces	the	time	it	takes	to	develop	an	Ionic	app.	It’s	like	a	Swiss	Army	Knife:	It	brings	together	a	bunch	of	miscellaneous	tools	under	a	single	interface.	The	CLI	contains	a	number	of	useful	commands	for	Ionic	development,	such	as	start,	build,	generate,	serve,	and	run.	After	installation	completes,	cd	into	spring-
boot-ionic-example	and	create	a	new	application	using	the	following	command:	You	will	be	prompted	to	select	a	starter	project	and	optionally	integrate	with	Cordova	to	target	native	iOS	and	Android.	For	the	purposes	of	this	tutorial,	choose	the	tabs	starter	project	and	answer	Yes	to	Cordova.	cd	ionic-beer	ionic	serve	This	will	open	your	default
browser	on	.	You	can	click	through	the	tabbed	interface	to	see	the	default	structure	of	the	app.	Open	the	ionic-beer	project	in	your	preferred	IDEA	to	start	creating	your	UI.	I	recommend	using	IntelliJ	IDEA	because	it	has	good	TypeScript	support	and	can	auto-import	classes	just	like	it	does	for	Java	project.	Create	a	Good	Beers	UI	Run	ionic	generate
page	beer	to	create	a	component	and	a	template	to	display	the	list	of	good	beers.	This	creates	a	number	of	files	in	src/pages/beer:	beer.html	beer.module.ts	beer.scss	beer.ts	Open	src/app/app.module.ts	and	add	BeerPageModule	to	the	imports	list	in	app.module.ts.	import	{	BeerPageModule	}	from	'../pages/beer/beer.module';	@NgModule({	...
imports:	[BrowserModule,	IonicModule.forRoot(MyApp),	BeerPageModule],	...	})	Create	src/providers/beer-service.ts	to	hold	a	BeerService	that	fetches	the	beer	list	from	the	Spring	Boot	API.	Populate	it	with	constants	for	the	API	path	and	add	a	getGoodBeers()	method.	import	{	Injectable	}	from	'@angular/core';	import	{	Observable	}	from	'rxjs';
import	{	HttpClient	}	from	'@angular/common/http';	@Injectable()	export	class	BeerService	{	public	API	=	'	';	public	BEER_API	=	this.API	+	'/beers';	constructor(public	http:	HttpClient)	{	}	getGoodBeers():	Observable	{	return	this.http.get(this.API	+	'/good-beers');	}	}	Replace	the	HTML	in	src/pages/beer/beer.html	to	show	the	list	of	beers.	Good
Beers	{{beer.name}}	Modify	src/pages/beer/beer.module.ts	to	import	BeerService	and	add	it	as	a	provider.	You	could	add	it	as	a	provider	in	each	component,	but	adding	it	in	the	module	allows	all	components	to	use	it.	import	{	BeerService	}	from	'../../providers/beer-service';	@NgModule({	...	providers:	[BeerService]	})	Update
src/pages/beer/beer.ts	to	import	BeerService	and	add	it	as	a	dependency	in	the	constructor.	Call	the	getGoodBeers()	method	in	the	ionViewDidLoad()	lifecycle	method.	import	{	Component	}	from	'@angular/core';	import	{	IonicPage,	NavController,	NavParams	}	from	'ionic-angular';	import	{	BeerService	}	from	'../../providers/beer-service';
@IonicPage()	@Component({	selector:	'page-beer',	templateUrl:	'beer.html'	})	export	class	BeerPage	{	private	beers:	Array;	constructor(public	navCtrl:	NavController,	public	navParams:	NavParams,	public	beerService:	BeerService)	{	}	ionViewDidLoad()	{	this.beerService.getGoodBeers().subscribe(beers	=>	{	this.beers	=	beers;	})	}	}	To	expose
this	page	on	the	tab	bar,	modify	src/pages/tabs/tabs.ts	and	re-arrange	things	so	BeerPage	is	second	in	the	list.	import	{	Component	}	from	'@angular/core';	import	{	HomePage	}	from	'../home/home';	import	{	AboutPage	}	from	'../about/about';	import	{	ContactPage	}	from	'../contact/contact';	import	{	BeerPage	}	from	'../beer/beer';	@Component({
templateUrl:	'tabs.html'	})	export	class	TabsPage	{	tab1Root	=	HomePage;	tab2Root	=	BeerPage;	tab3Root	=	AboutPage;	tab4Root	=	ContactPage;	constructor()	{}	}	You’ll	also	need	to	update	src/pages/tabs/tabs.html	to	have	the	new	tab	order	and	to	specify	which	icon	to	use.	Add	Some	Fun	with	Animated	GIFs	Create	a	GiphyService	class	in
src/providers/giphy-service.ts	with	code	that	searches	Giphy’s	API.	import	{	Injectable	}	from	'@angular/core';	import	{	HttpClient	}	from	'@angular/common/http';	import	'rxjs/add/operator/map';	@Injectable()	//	export	class	GiphyService	{	giphyApi	=	'	constructor(public	http:	HttpClient)	{	}	get(searchTerm)	{	const	apiLink	=	this.giphyApi	+
searchTerm;	return	this.http.get(apiLink).map((response:	any)	=>	{	if	(response.data.length	>	0)	{	return	response.data[0].images.original.url;	}	else	{	return	'	;	//	dancing	cat	for	404	}	});	}	}	Update	beer.module.ts	to	import	GiphyService	and	include	it	as	a	provider.	import	{	GiphyService	}	from	'../../providers/giphy-service';	@NgModule({	...
providers:	[BeerService,	GiphyService]	})	Modify	beer.ts	to	import	GiphyService	and	set	a	giphyUrl	on	each	beer.	import	{	Component	}	from	'@angular/core';	import	{	IonicPage,	NavController,	NavParams	}	from	'ionic-angular';	import	{	BeerService	}	from	'../../providers/beer-service';	import	{	GiphyService	}	from	'../../providers/giphy-service';
@IonicPage()	@Component({	selector:	'page-beer',	templateUrl:	'beer.html'	})	export	class	BeerPage	{	private	beers:	Array;	constructor(public	navCtrl:	NavController,	public	navParams:	NavParams,	public	beerService:	BeerService,	public	giphyService:	GiphyService)	{	}	ionViewDidLoad()	{	this.beerService.getGoodBeers().subscribe(beers	=>	{
this.beers	=	beers;	for	(const	beer	of	this.beers)	{	this.giphyService.get(beer.name).subscribe(url	=>	{	beer.giphyUrl	=	url	});	}	})	}	}	Update	beer.html	to	display	the	image	retrieved:	{{beer.name}}	Start	the	Spring	Boot	app	in	one	terminal	window	and	run	ionic	serve	in	another.	Open	in	your	browser.	Click	on	the	Beer	icon,	and	you’ll	likely	see	an
error	in	your	browser.	Error:	Uncaught	(in	promise):	Error:	StaticInjectorError[HttpClient]:	StaticInjectorError[HttpClient]:	NullInjectorError:	No	provider	for	HttpClient!	This	highlights	one	of	the	slick	features	of	Ionic:	errors	display	in	your	browser,	not	just	the	browser’s	console.	Add	HttpClientModule	to	the	list	of	imports	in	src/app/app.module.ts
to	solve	this	issue.	import	{	HttpClientModule	}	from	'@angular/common/http';	@NgModule({	...	imports:	[BrowserModule,	HttpClientModule,	IonicModule.forRoot(MyApp),	BeerPageModule],	After	making	this	change,	you’ll	likely	see	the	following	error	in	your	browser’s	console.	XMLHttpRequest	cannot	load	.	No	'Access-Control-Allow-Origin'
header	is	present	on	the	requested	resource.	Origin	'	'	is	therefore	not	allowed	access.	The	response	had	HTTP	status	code	401.	To	fix	this,	open	your	Spring	Boot	application’s	BeerController.java	class	and	change	its	@CrossOrigin	annotation	to	allow	and	.	This	enables	cross-origin	resource	sharing	(CORS)	from	both	the	browser	and	the	mobile	client
(is	used	by	iOS	Simulator).	@CrossOrigin(origins	=	{"	","	"})	public	Collection	goodBeers()	{	Recompile	this	class,	and	DevTools	should	restart	the	application.	If	everything	works	as	expected,	you	should	see	a	page	similar	to	the	one	below	in	your	browser.	Change	the	header	in	beer.html	to	have	a	button	that	opens	a	modal	to	add	a	new	beer.	Good
Beers	In	this	same	file,	change	to	have	a	click	handler	for	opening	the	modal	for	the	current	item.	Add	ModalController	as	a	dependency	in	beer.ts	and	add	an	openModal()	method.	import	{	IonicPage,	ModalController,	NavController,	NavParams	}	from	'ionic-angular';	export	class	BeerPage	{	private	beers:	Array;	constructor(public	navCtrl:
NavController,	public	navParams:	NavParams,	public	beerService:	BeerService,	public	giphyService:	GiphyService,	public	modalCtrl:	ModalController)	{	}	//	ionViewDidLoad()	openModal(beerId)	{	let	modal	=	this.modalCtrl.create(BeerModalPage,	beerId);	modal.present();	//	refresh	data	after	modal	dismissed	modal.onDidDismiss(()	=>
this.ionViewDidLoad())	}	}	This	won’t	compile	because	BeerModalPage	doesn’t	exist.	Create	beer-modal.ts	in	the	same	directory.	This	page	will	retrieve	the	beer	from	the	beerId	that’s	passed	in.	It	will	render	the	name,	allow	editing,	and	show	the	Giphy	image	found	for	the	name.	import	{	BeerService	}	from	'../../providers/beer-service';	import	{
Component,	ViewChild	}	from	'@angular/core';	import	{	GiphyService	}	from	'../../providers/giphy-service';	import	{	NavParams,	ViewController,	ToastController,	NavController	}	from	'ionic-angular';	import	{	NgForm	}	from	'@angular/forms';	@Component({	templateUrl:	'./beer-modal.html'	})	export	class	BeerModalPage	{	@ViewChild('name')
name;	beer:	any	=	{};	error:	any;	constructor(public	beerService:	BeerService,	public	giphyService:	GiphyService,	public	params:	NavParams,	public	viewCtrl:	ViewController,	public	toastCtrl:	ToastController,	public	navCtrl:	NavController)	{	if	(this.params.data.id)	{	this.beerService.get(this.params.get('id')).subscribe((beer:	any)	=>	{	this.beer	=
beer;	this.beer.href	=	beer._links.self.href;	this.giphyService.get(beer.name).subscribe(url	=>	beer.giphyUrl	=	url);	});	}	}	dismiss()	{	this.viewCtrl.dismiss();	}	save(form:	NgForm)	{	let	update:	boolean	=	form['href'];	this.beerService.save(form).subscribe(result	=>	{	let	toast	=	this.toastCtrl.create({	message:	'Beer	"'	+	form.name	+	'"	'	+	((update)
?	'updated'	:	'added')	+	'.',	duration:	2000	});	toast.present();	this.dismiss();	},	error	=>	this.error	=	error)	}	ionViewDidLoad()	{	setTimeout(()	=>	{	this.name.setFocus();	},150);	}	}	Add	the	import	for	BeerModalPage	to	beer.ts,	then	create	src/pages/beer/beer-modal.html	as	a	template	for	this	page.	{{beer	?	'Beer	Details'	:	'Add	Beer'}}	Cancel
{{error}}	Save	You’ll	also	need	to	modify	beer-service.ts	to	have	get()	and	save()	methods.	get(id:	string)	{	return	this.http.get(this.BEER_API	+	'/'	+	id);	}	save(beer:	any):	Observable	{	let	result:	Observable;	if	(beer['href'])	{	result	=	this.http.put(beer.href,	beer);	}	else	{	result	=	this.http.post(this.BEER_API,	beer)	}	return	result.catch(error	=>
Observable.throw(error));	}	At	this	point,	if	you	try	to	add	or	edit	a	beer	name,	you’ll	likely	see	an	error	in	your	browser’s	console.	Uncaught	(in	promise):	Error:	No	component	factory	found	for	BeerModalPage.	Did	you	add	it	to	@NgModule.entryComponents?	To	fix	this	problem,	add	BeerModalPage	to	the	declarations	and	entryComponent	lists	in
beer.module.ts.	import	{	BeerModalPage	}	from	'./beer-modal';	@NgModule({	declarations:	[BeerPage,	BeerModalPage],	...	entryComponents:	[BeerModalPage]	})	Now	if	you	try	to	edit	a	beer’s	name,	you’ll	see	another	CORS	in	your	browser’s	console.	Add	a	@CrossOrigin	annotation	to	BeerRepository.java	(in	your	Spring	Boot	project)	that
matches	the	one	in	BeerController.	@RepositoryRestResource	@CrossOrigin(origins	=	{"	","	"})	Re-compile	and	now	everything	should	work	as	expected.	For	example,	below	is	a	screenshot	that	shows	I	added	a	new	beer	and	what	it	looks	like	when	editing	it.	Add	Swipe	to	Delete	To	add	swipe-to-delete	functionality	on	the	list	of	beers,	open	beer.html
and	make	it	so	wraps	and	contains	the	*ngFor.	Add	a	delete	button	using	.	{{beer.name}}	Delete	Add	a	remove()	method	to	beer.ts.	remove(beer)	{	this.beerService.remove(beer.id).subscribe(response	=>	{	for	(let	i	=	0;	i	<	this.beers.length;	i++)	{	if	(this.beers[i]	===	beer)	{	this.beers.splice(i,	1);	let	toast	=	this.toastCtrl.create({	message:	'Beer	"'
+	beer.name	+	'"	deleted.',	duration:	2000,	position:	'top'	});	toast.present();	}	}	});	}	Add	and	import	ToastController	as	a	dependency	in	the	constructor,	so	everything	compiles.	constructor(public	navCtrl:	NavController,	public	navParams:	NavParams,	public	beerService:	BeerService,	public	giphyService:	GiphyService,	public	modalCtrl:
ModalController,	public	toastCtrl:	ToastController)	{	}	You’ll	also	need	to	modify	beer-service.ts	to	have	a	remove()	method.	remove(id:	string)	{	return	this.http.delete(this.BEER_API	+	'/'	+	id);	}	After	making	these	additions,	you	should	be	able	to	delete	beer	names.	To	emulate	a	left	swipe	in	your	browser,	click	on	the	item	and	drag	it	to	the	left.
PWAs	with	Ionic	Ionic	ships	with	support	for	creating	progressive	web	apps	(PWAs).	If	you’d	like	to	learn	more	about	what	PWAs	are,	see	Navigating	the	World	of	Progressive	Web	Apps	with	Ionic	2.	This	blog	post	is	still	relevant	for	Ionic	3.	If	you	run	the	Lighthouse	Chrome	extension	on	this	application,	you’ll	likely	get	a	mediocre	score	in	the	40s.	To
register	a	service	worker,	and	improve	the	app’s	score,	uncomment	the	following	block	in	src/index.html.	After	making	this	change,	the	score	should	improve.	In	my	tests,	it	increased	to	73/100.	The	remaining	issues	were:	Does	not	provide	fallback	content	when	JavaScript	is	not	available.	Does	not	redirect	HTTP	traffic	to	HTTPS	Page	load	is	not	fast
enough	on	3G	Has	a	tag	with	width	or	initial-scale	To	fix	the	first	issue,	add	the	following	HTML	in	src/index.html,	just	after	the	tag.	You	must	enable	JavaScript	to	view	this	page.	To	fix	the	last	issue,	remove	viewport-fit=cover,	from	the	tag’s	content	attribute.	Deploy	to	a	Mobile	Device	It’s	pretty	cool	that	you’re	able	to	develop	mobile	apps	with	Ionic
in	your	browser.	However,	it’s	nice	to	see	the	fruits	of	your	labor	and	see	how	awesome	your	app	looks	on	a	phone.	It	really	does	look	and	behave	like	a	native	app!	To	see	how	your	application	will	look	on	different	devices	you	can	run	ionic	serve	--lab.	The	--lab	flag	opens	a	page	in	your	browser	that	lets	you	see	how	your	app	looks	on	different
devices.	iOS	To	emulate	or	deploy	to	an	iOS	device,	you’ll	need	a	Mac	and	a	fresh	installation	of	Xcode.	If	you’d	like	to	build	iOS	apps	on	Windows,	Ionic	offers	an	Ionic	Package	service.	Make	sure	to	open	Xcode	to	complete	the	installation.	Then	run	ionic	cordova	emulate	ios	to	open	your	app	in	Simulator.	TIP:	The	biggest	problem	I	found	when
running	the	app	in	Simulator	was	that	it	was	difficult	to	get	the	keyboard	to	popup.	To	workaround	this,	I	used	Hardware	>	Keyboard	>	Toggle	Software	Keyboard	when	I	needed	to	type	text	in	a	field.	Deploying	to	your	phone	will	likely	fail	because	it	won’t	be	able	to	connect	to	.	To	fix	this,	you	can	deploy	your	Spring	Boot	app	to	a	public	server,	or
use	your	computer’s	IP	address	in	beer.service.ts	(if	you’re	on	the	same	wireless	network).	To	deploy	to	Cloud	Foundry,	copy	this	deploy.sh	script	to	your	hard	drive.	It	expects	to	be	in	a	directory	above	your	apps	(e.g.	spring-boot-ionic-example).	It	also	expects	your	apps	to	be	named	ionic-beer	and	server.	If	you	don’t	have	a	Cloud	Foundry	account,
you’ll	need	to	create	one.	Then	install	its	command	line	tools	(and	login)	for	this	script	to	work.	brew	tap	cloudfoundry/tap	&&	brew	install	cf-cli	cf	login	-a	api.run.pivotal.io	After	logging	into	Cloud	Foundry,	you	should	be	able	to	run	./deploy.sh.	This	script	will	deploy	the	server	and	modify	beer.service.ts	to	point	to	it.	It	will	also	try	to	deploy	to	your
phone,	so	you	may	need	to	complete	the	steps	below	before	it	will	work.	To	deploy	the	app	to	an	iPhone,	start	by	plugging	it	into	your	computer.	Then	run	the	following	commands	to	install	ios-deploy/ios-sim,	build	the	app,	and	run	it	on	your	device.	npm	install	-g	ios-deploy	ios-sim	ionic	cordova	build	ios	--prod	open	platforms/ios/ionic-beer.xcodeproj
Select	your	phone	as	the	target	in	Xcode	and	click	the	play	button	to	run	your	app.	The	first	time	you	do	this,	Xcode	may	spin	for	a	while	with	a	“Processing	symbol	files”	message	at	the	top.	NOTE:	If	you	run	into	code	signing	issues,	see	Ionic’s	deployment	documentation	to	see	how	to	solve.	Once	you’ve	configured	your	phone,	computer,	and	Apple
ID	to	work,	you	should	be	able	to	open	the	app	and	see	the	beer	list	you	created.	Below	is	how	it	looks	on	my	iPhone	7	Plus.	Android	To	emulate	or	deploy	to	an	Android	device,	you’ll	first	need	to	install	Android	Studio.	As	part	of	the	install,	it	will	show	you	where	it	installed	the	Android	SDK.	Set	this	path	as	an	ANDROID_HOME	environment	variable.
On	a	Mac,	it	should	be	~/Library/Android/sdk/.	If	you’ve	just	installed	Android	Studio,	make	sure	to	open	it	to	complete	the	installation.	To	deploy	to	the	Android	emulator,	run	ionic	cordova	emulate	android.	This	will	install	Android	support	and	display	an	error	if	you	don’t	have	any	AVD	(Android	Virtual	Device)	images.	(node:9300)
UnhandledPromiseRejectionWarning:	CordovaError:	No	emulator	images	(avds)	found.	1.	Download	desired	System	Image	by	running:	/Users/mraible/Library/Android/sdk/tools/android	sdk	2.	Create	an	AVD	by	running:	/Users/mraible/Library/Android/sdk/tools/android	avd	HINT:	For	a	faster	emulator,	use	an	Intel	System	Image	and	install	the	HAXM
device	driver	To	create	a	new	AVD,	open	Android	Studio	and	navigate	to	Tools	>	Android	>	AVD	Manager.	Create	a	new	Virtual	Device	and	click	Play.	I	chose	a	Pixel	2.	After	performing	these	steps,	you	should	be	able	to	run	ionic	cordova	emulate	android	and	see	your	app	running	in	the	AVD.	Learn	More	about	Ionic	and	Angular	I	hope	you’ve	enjoyed
this	tour	of	Ionic	and	Angular.	I	like	how	Ionic	takes	your	web	development	skills	up	a	notch	and	allows	you	to	create	mobile	applications	that	look	and	behave	natively.	You	can	find	a	completed	version	of	the	application	created	in	this	blog	post	on	GitHub.	If	you	encountered	issues,	please	create	an	issue	in	GitHub	or	hit	me	up	on	Twitter	@mraible.
To	learn	more	about	Ionic	and	Angular,	please	see	the	following	resources:	Update:	To	learn	how	to	add	authentication	to	an	Ionic	app,	see	Build	an	Ionic	App	with	User	Authentication.	Page	2	You’re	developing	a	Progressive	Web	Application	(PWA),	and	your	service	worker	and	web	app	manifest	are	working	swimmingly.	You’ve	even	taken	the	time
to	deploy	it	to	a	server	with	HTTPS,	and	you’re	feeling	pretty	good	about	things.	But	wait,	you	don’t	have	any	way	of	knowing	who	your	users	are!	Don’t	you	want	to	provide	them	with	an	opportunity	to	authenticate	and	tell	you	who	they	are?	Once	you	know	who	they	are,	you	can	give	them	all	kinds	of	personalization	options,	inspire	them	to	❤		your
app,	and	maybe	even	support	your	work!	In	this	article,	I’ll	show	you	how	you	can	lock	down	a	Spring	Boot	app,	then	use	a	modern	authentication	protocol,	in	this	case,	OpenID	Connect	(OIDC),	to	authenticate	and	gain	access	to	its	APIs.	Secure	Your	Spring	Boot	App	You	might’ve	heard	that	Stormpath	joined	forces	with	Okta	a	few	months	ago
(February	2017).	Since	the	transition,	we’ve	been	working	hard	to	make	the	Stormpath	SDKs	work	with	Okta’s	API.	The	good	news	is	we’ve	made	significant	progress!	In	this	example,	you’ll	use	Okta’s	Spring	Boot	Starter	to	add	security	to	a	Spring	Boot	app.	Then	I’ll	show	you	how	you	can	use	OIDC	and	Okta’s	Angular	SDK	in	an	Angular	app	to	log
in	and	get	data	from	the	Spring	Boot	app.	I	recently	created	a	Spring	Boot	app	that	provides	a	list	of	good	beers,	based	on	a	pre-populated	list.	It	filters	out	less-than-great	beers	and	displays	them	in	an	Angular	UI	that	displays	the	first	animated	GIF	(from	Giphy)	that	matches	the	beer	name.	Let’s	get	started!	Rather	than	building	Spring	Boot	and
Angular	applications	from	scratch,	you	can	clone	an	existing	GitHub	project	to	get	you	going	quickly.	git	clone	If	you’d	prefer	to	build	this	application	yourself,	please	read	Build	Your	First	Progressive	Web	Application	with	Angular	and	Spring	Boot.	In	this	project’s	server/pom.xml	file,	you’ll	need	to	add	the	Okta	Spring	Boot	starter	as	a	dependency,
and	force	Spring	Security	to	use	the	latest	version	of	Spring	Security	OAuth:	0.3.0	...	com.okta.spring	okta-spring-boot-starter	${okta.version}	org.springframework.security.oauth	spring-security-oauth2	2.2.1.RELEASE	NOTE:	You’ll	need	to	comment	out	the	devtools	dependency	to	work	around	an	issue	in	the	Okta	Spring	Boot	Starter.	Get	Started
with	Okta	To	begin,	you’ll	need	to	create	an	Okta	Developer	account.	This	account	is	free	forever	and	provides	the	complete	Okta	Identity	Platform	for	up	to	3	applications	and	100	users.	Head	on	over	to	Fill	out	the	signup	form,	and	click	“Get	Started”	Within	a	few	minutes,	you’ll	get	a	confirmation	email,	follow	the	instructions	in	the	email	to	finish
setting	up	your	account	Log	in	to	your	Okta	Developer	account	and	navigate	to	Applications	>	Add	Application.	Click	Single-Page	App,	click	Next,	and	give	the	app	a	name	you’ll	remember	(e.g.,	“Angular	PWA”).	Change	all	instances	of	localhost:8080	to	localhost:4200	and	click	Done.	TIP:	Add	as	a	Logout	redirect	URI,	so	log	out	functionality	works	in
your	Angular	app.	Copy	the	client	ID	into	your	server/src/main/resources/application.properties	file.	While	you’re	in	there,	add	a	okta.oauth2.issuer	property	that	matches	your	Okta	domain.	For	example:	okta.oauth2.issuer=https://{yourOktaDomain}/oauth2/default	okta.oauth2.clientId={clientId}	Update
server/src/main/java/com/okta/developer/demo/DemoApplication.java	to	enable	it	as	a	resource	server.	import	org.springframework.security.oauth2.config.annotation.web.configuration.EnableResourceServer;	@EnableResourceServer	@SpringBootApplication	Now,	start	it	up…	cd	server	./mvnw	spring-boot:run	Navigate	to	,	and	you’ll	see	an	access
denied	error.	If	you	call	the	API	with	a	different	Accept	header	(e.g.	application/json),	you’ll	get	a	JSON	response.	The	command	below	uses	HTTPie.	$	http	:8080	HTTP/1.1	401	Cache-Control:	no-cache,	no-store,	max-age=0,	must-revalidate	Cache-Control:	no-store	Content-Type:	application/json;charset=UTF-8	Date:	Fri,	23	Feb	2018	18:50:58	GMT
Expires:	0	Pragma:	no-cache	Pragma:	no-cache	Transfer-Encoding:	chunked	WWW-Authenticate:	Bearer	realm="api://default",	error="unauthorized",	error_description="Full	authentication	is	required	to	access	this	resource"	X-Content-Type-Options:	nosniff	X-Frame-Options:	DENY	X-XSS-Protection:	1;	mode=block	{	"error":	"unauthorized",
"error_description":	"Full	authentication	is	required	to	access	this	resource"	}	Authenticate	with	OpenID	Connect	Start	the	Angular	application	by	running	the	following	commands	in	your	project’s	root	directory.	cd	client	npm	install	ng	serve	If	you	receive	an	error	like	the	one	below,	disable	the	warning	using	the	instructions	provided,	or	just	ignore

it.	You	can	upgrade	your	dependencies	in	package.json,	but	there’s	no	guarantee	that	this	tutorial	will	still	work!	;)	Your	global	Angular	CLI	version	(1.7.0)	is	greater	than	your	local	version	(1.6.7).	The	local	Angular	CLI	version	is	used.	To	disable	this	warning	use	"ng	set	--global	warnings.versionMismatch=false".	When	you	navigate	to	,	you’ll	likely
see	a	cross-origin	request	error.	Failed	to	load	No	'Access-Control-Allow-Origin'	header	is	present	on	the	requested	resource.	Origin	'	'	is	therefore	not	allowed	access.	The	response	had	HTTP	status	code	401.	You	can	usually	use	a	@CrossOrigin	annotation	to	enable	cross-origin	resource	sharing	(CORS)	on	the	server,	but	it	won’t	work	once	you
integrate	Spring	Security.	To	solve	this	issue,	create	a	simpleCorsFilter	bean	in	your	DemoApplication.java	class.	package	com.example.demo;	import	org.springframework.boot.SpringApplication;	import	org.springframework.boot.autoconfigure.SpringBootApplication;	import	org.springframework.boot.web.servlet.FilterRegistrationBean;	import
org.springframework.context.annotation.Bean;	import	org.springframework.core.Ordered;	import	org.springframework.security.oauth2.config.annotation.web.configuration.EnableResourceServer;	import	org.springframework.web.cors.CorsConfiguration;	import	org.springframework.web.cors.UrlBasedCorsConfigurationSource;	import
org.springframework.web.filter.CorsFilter;	import	java.util.Collections;	@EnableResourceServer	@SpringBootApplication	public	class	DemoApplication	{	public	static	void	main(String[]	args)	{	SpringApplication.run(DemoApplication.class,	args);	}	@Bean	public	FilterRegistrationBean	simpleCorsFilter()	{	UrlBasedCorsConfigurationSource	source	=
new	UrlBasedCorsConfigurationSource();	CorsConfiguration	config	=	new	CorsConfiguration();	config.setAllowCredentials(true);	config.setAllowedOrigins(Collections.singletonList("	"));	config.setAllowedMethods(Collections.singletonList("*"));	config.setAllowedHeaders(Collections.singletonList("*"));	source.registerCorsConfiguration("/**",	config);
FilterRegistrationBean	bean	=	new	FilterRegistrationBean(new	CorsFilter(source));	bean.setOrder(Ordered.HIGHEST_PRECEDENCE);	return	bean;	}	}	You	can	remove	the	@CrossOrigin	annotation	from	BeerController.java	since	it’s	no	longer	needed.	Make	sure	to	save	the	files	you	changed	and	restart	your	server.	Install	Manfred	Steyer’s	project
to	add	OAuth	2	and	OpenID	Connect	support	to	your	Angular	client.	npm	install	--save	angular-oauth2-oidc	Update	client/src/app/app.component.ts	to	import	OAuthService	and	configure	your	app	to	use	your	Okta	application	settings	(replacing	{clientId}	and	{yourOktaDomain}	with	the	values	from	your	“Angular	PWA”	OIDC	app).	import	{
JwksValidationHandler,	OAuthService	}	from	'angular-oauth2-oidc';	...	constructor(private	oauthService:	OAuthService)	{	this.oauthService.redirectUri	=	window.location.origin;	this.oauthService.clientId	=	'{clientId}';	this.oauthService.scope	=	'openid	profile	email';	this.oauthService.oidc	=	true;	this.oauthService.issuer	=
'https://{yourOktaDomain}/oauth2/default';	this.oauthService.tokenValidationHandler	=	new	JwksValidationHandler();	this.oauthService.loadDiscoveryDocumentAndTryLogin();	}	...	Modify	client/src/app/app/app.component.html	to	use	instead	of	.	Create	client/src/app/home/home.component.ts	and	configure	it	to	display	Login	and	Logout	buttons.
import	{	Component	}	from	'@angular/core';	import	{	OAuthService	}	from	'angular-oauth2-oidc';	@Component({	template:	`	Welcome,	{{givenName}}!	Logout	Beer	List	Login	`	})	export	class	HomeComponent	{	constructor(private	oauthService:	OAuthService)	{	}	login()	{	this.oauthService.initImplicitFlow();	}	logout()	{
this.oauthService.logOut();	}	get	givenName()	{	const	claims:	any	=	this.oauthService.getIdentityClaims();	if	(!claims)	{	return	null;	}	return	claims.name;	}	}	Modify	client/src/app/shared/beer/beer.service.ts	to	read	the	access	token	from	oauthService	and	add	an	Authorization	header.	import	{	Injectable	}	from	'@angular/core';	import	{	HttpClient,
HttpHeaders	}	from	'@angular/common/http';	import	{	Observable	}	from	'rxjs/Observable';	import	{	OAuthService	}	from	'angular-oauth2-oidc';	@Injectable()	export	class	BeerService	{	constructor(private	http:	HttpClient,	private	oauthService:	OAuthService)	{}	getAll():	Observable	{	return	this.http.get('	,	{headers:	this.getHeaders()});	}
getHeaders():	HttpHeaders	{	return	new	HttpHeaders().set('Authorization',	this.oauthService.authorizationHeader());	}	}	Create	client/src/app/shared/auth/auth.guard.ts	to	navigate	to	the	HomeComponent	if	the	user	is	not	authenticated.	import	{	Injectable	}	from	'@angular/core';	import	{	ActivatedRouteSnapshot,	CanActivate,	Router,
RouterStateSnapshot	}	from	'@angular/router';	import	{	OAuthService	}	from	'angular-oauth2-oidc';	@Injectable()	export	class	AuthGuard	implements	CanActivate	{	constructor(private	oauthService:	OAuthService,	private	router:	Router)	{}	canActivate(route:	ActivatedRouteSnapshot,	state:	RouterStateSnapshot):	boolean	{	if
(this.oauthService.hasValidIdToken())	{	return	true;	}	this.router.navigate(['/home']);	return	false;	}	}	Add	OAuthModule.forRoot()	to	the	list	of	imports	in	client/src/app/app.module.ts,	add	HomeComponent	in	declarations,	and	lock	the	/beer-list	route	down	with	the	AuthGuard.	While	you’re	there,	add	MatCardModule	to	the	list	of	imports	since
HomeComponent	uses	components	from	this	module.	import	{	OAuthModule	}	from	'angular-oauth2-oidc';	import	{	HomeComponent	}	from	'./home/home.component';	import	{	RouterModule,	Routes	}	from	'@angular/router';	import	{	AuthGuard	}	from	'./shared/auth/auth.guard';	import	{	MatCardModule	}	from	'@angular/material';	const
appRoutes:	Routes	=	[{	path:	'beer-list',	component:	BeerListComponent,	canActivate:	[AuthGuard]	},	{	path:	'home',	component:	HomeComponent	},	{	path:	'',	redirectTo:	'home',	pathMatch:	'full'	},	{	path:	'**',	redirectTo:	'home'	}];	@NgModule({	declarations:	[...	HomeComponent],	imports:	[...	MatCardModule,	OAuthModule.forRoot(),
RouterModule.forRoot(appRoutes)],	providers:	[AuthGuard],	bootstrap:	[AppComponent]	})	export	class	AppModule	{	}	After	making	these	changes,	you	should	be	able	to	run	ng	serve	and	see	a	login	button.	Click	the	Login	button	and	sign-in	with	one	of	the	users	assigned	in	your	Okta	application.	You	should	see	a	welcome	message	like	the	one
below.	Click	on	Beer	List	to	see	data	from	your	Spring	Boot	app.	To	add	the	“Home”	link	at	the	top	(as	shown	in	the	screenshot	above),	modify	client/src/app/beer-list/beer-list.component.html	to	include	the	following	HTML.	Home	Beer	List

{{beer.name}}

If	it	works	-	great,	now	we	can	add	auth	with	Okta!	Authenticating	with	the	Okta	Auth	SDK	The	Okta	Auth	SDK	builds	on	top	of	Okta’s	Authentication	API	and	OAuth	2.0	API	to	enable	you	to	create	a	fully	branded	sign-in	experience	using	JavaScript.	Install	it	using	npm:	npm	install	@okta/okta-auth-js	--save	Change	HomeComponent	to	import
OktaAuth	and	modify	its	template,	so	it	has	a	sign-in	form.	import	*	as	OktaAuth	from	'@okta/okta-auth-js';	@Component({	template:	`	Welcome,	{{givenName}}!	Logout	Beer	List	Login	with	Redirect	Login	Login	Directly	{{error}}	Login	`	})	Update	client/src/app/app.module.ts	to	import	the	dependencies	required	by	Angular	Material	when	working
with	forms.	import	{	MatInputModule	}	from	'@angular/material';	import	{	FormsModule	}	from	'@angular/forms';	import	{	BrowserAnimationsModule	}	from	'@angular/platform-browser/animations';	@NgModule({	...	imports:	[...	FormsModule,	BrowserAnimationsModule,	MatInputModule],	...	})	After	making	these	changes,	run	ng	serve	and	the
HomeComponent	should	render	as	follows	(after	you’ve	logged	out	and	unchecked	“Offline”	in	the	Network	tab):	In	HomeComponent,	import	Angular’s	ChangeDetectorRef,	add	it	as	a	dependency	in	the	constructor,	and	add	local	variables	for	the	username	and	password	fields.	Then	implement	a	loginWithPassword()	method	in	HomeComponent.	This
method	uses	the	OktaAuth	library	to	get	a	session	token	and	exchange	it	for	ID	and	access	tokens.	import	{	ChangeDetectorRef	}	from	'@angular/core';	...	export	class	HomeComponent	{	private	username:	string;	private	password:	string;	private	error:	string;	constructor(private	oauthService:	OAuthService,	private	changeDetector:
ChangeDetectorRef)	{	}	...	loginWithPassword()	{	this.oauthService.createAndSaveNonce().then(nonce	=>	{	const	authClient	=	new	OktaAuth({	url:	'https://{yourOktaDomain}',	issuer:	'default'	});	return	authClient.signIn({	username:	this.username,	password:	this.password	}).then((response)	=>	{	if	(response.status	===	'SUCCESS')	{	return
authClient.token.getWithoutPrompt({	clientId:	this.oauthService.clientId,	responseType:	['id_token',	'token'],	scopes:	['openid',	'profile',	'email'],	sessionToken:	response.sessionToken,	nonce:	nonce,	redirectUri:	window.location.origin	})	.then((tokens)	=>	{	const	idToken	=	tokens[0].idToken;	const	accessToken	=	tokens[1].accessToken;	const
keyValuePair	=	`#id_token=${encodeURIComponent(idToken)}&access_token=${encodeURIComponent(accessToken)}`;	this.oauthService.tryLogin({	customHashFragment:	keyValuePair,	disableOAuth2StateCheck:	true	}).then(()	=>	{	//	notify	Angular	that	things	have	changed	this.changeDetector.detectChanges();	});	});	}	else	{	throw	new
Error('We	cannot	handle	the	'	+	response.status	+	'	status');	}	}).fail((error)	=>	{	console.error(error);	this.error	=	error.message;	});	});	}	}	You	should	be	able	to	sign	in	with	the	form	as	one	of	your	app’s	registered	users.	After	logging	in,	you’ll	be	able	to	click	the	Beer	List	link	and	view	the	beer	list.	Deploy	to	Cloud	Foundry	Now	it’s	time	for	one	of
the	coolest	places	on	the	internet	-	production!	You’ll	need	to	modify	the	deploy.sh	script	in	the	root	directory	to	replace	in	DemoApplication.java	instead	of	BeerController.java,	but	that’s	about	it.	You	can	see	the	modified	deploy.sh	on	GitHub.	Copy	the	contents	of	this	file	on	top	of	your	existing	deploy.sh.	Install	the	Cloud	Foundry	CLI,	then	log	into
Pivotal	Web	Services.	cf	login	-a	api.run.pivotal.io	Run	./deploy.sh	and	watch	the	magic	happen!	If	you	navigate	to	the	client’s	URL	after	deploying,	you’ll	see	an	error	like	the	following	in	Chrome’s	console.	Failed	to	load	No	'Access-Control-Allow-Origin'	header	is	present	on	the	requested	resource.	Origin	'	'	is	therefore	not	allowed	access.	To	fix	this,
modify	the	Trusted	Origins	on	Okta	(under	API	>	Trusted	Origins)	to	have	your	client’s	URL	(e.g.).	You’ll	also	need	to	add	this	URL	to	the	Login	redirect	URI	and	Logout	redirect	URI	properties	for	your	“Angular	PWA”	OIDC	application.	After	making	these	changes,	both	login	techniques	should	work	as	expected	and	you	should	be	able	to	load	the
beer	list	from	your	Spring	Boot	app.	After	I	got	everything	deployed,	I	used	Lighthouse	to	audit	this	application	and	found	it	received	a	perfect	score.	Huzzah!	TIP:	Joe	Kutner,	Java	Languages	Owner	at	Heroku,	created	a	heroku.sh	script	you	can	use	to	deploy	this	same	application	to	Heroku.	Thanks,	Joe!	Happy	Authenticating!	You	can	find	the	source
code	associated	with	this	article	on	GitHub.	If	you	find	any	bugs,	please	file	an	issue,	or	post	your	question	to	the	Okta	Developer	Forums.	Of	course,	you	can	always	ping	me	on	Twitter	too.	This	article	showed	you	how	to	add	authentication	with	Okta	to	an	Angular	PWA	with	a	Spring	Boot	API.	You	learned	how	to	use	OpenID	Connect	to	get	an	access
token	and	securely	communicate	with	the	backend.	Finally,	you	saw	how	to	deploy	everything	to	Cloud	Foundry	and	get	a	Lighthouse	PWA	score	of	100.	To	learn	more	about	PWAs,	check	out	some	recent	tutorials	I	wrote:	There’s	also	a	number	of	excellent	resources	by	Google	and	Smashing	Magazine:	Page	3	Adopting	a	microservice	architecture
provides	unique	opportunities	to	add	failover	and	resiliency	to	your	systems,	so	your	components	can	handle	load	spikes	and	errors	gracefully.	Microservices	make	change	less	expensive	too.	It	can	also	be	a	good	idea	when	you	have	a	large	team	working	on	a	single	product.	Your	project	can	likely	be	broken	up	into	components	that	can	function
independently	of	one	another.	Once	components	can	function	independently,	they	can	be	built,	tested,	and	deployed	independently.	This	gives	an	organization	and	its	teams	the	agility	to	develop	and	deploy	very	quickly.	In	a	previous	article,	I	showed	you	how	to	build	a	Spring	Boot	API	with	an	Angular	client.	I	then	showed	you	how	to	convert	the
Angular	app	into	a	progressive	web	application	that	works	offline.	The	Angular	PWA	is	a	good	example	of	a	resilient	application	because	it	still	works	when	connectivity	fails.	Did	you	know	you	can	develop	similar	resiliency	in	your	API	with	Spring	Boot,	Spring	Cloud,	and	a	microservices	architecture?	This	article	shows	you	how	to	convert	the
previously	created	Spring	Boot	application	to	use	microservices.	You’ll	create	a	beer	catalog	service,	an	edge	service	(for	filter	and	displaying	good	beers),	and	a	Eureka	service	that	registers	the	services	and	allows	them	to	communicate	with	one	another.	Before	we	dive	into	the	code	tutorial,	I’d	like	to	talk	a	bit	about	microservices,	their	history,	and
why	you	should	(or	should	not)	consider	a	microservices	architecture	for	your	next	project.	History	of	Microservices	According	to	Wikipedia,	the	term	“microservice”	was	first	used	as	a	common	architecture	style	at	a	workshop	of	software	architects	near	Venice	in	May	2011.	In	May	2012,	the	same	group	decided	“microservices”	was	a	more
appropriate	name.	Adrian	Cockcroft,	who	was	at	Netflix	at	the	time,	described	this	architecture	as	“fine-grained	SOA”.	Martin	Fowler	and	James	Lewis	wrote	an	article	titled	simply	Microservices	on	March	25,	2014.	Years	later,	this	is	still	considered	the	definitive	article	for	microservices.	Organizations	and	Conway’s	Law	Technology	has	traditionally
been	organized	into	technology	layers:	UI	team,	database	team,	operations	team.	When	teams	are	separated	along	these	lines,	even	simple	changes	can	lead	to	a	cross-team	project	sucking	down	huge	chunks	of	time	and	budget.	A	smart	team	will	optimize	around	this	and	choose	the	lesser	of	two	evils;	forcing	the	logic	into	whichever	application	they
have	access	to.	This	is	an	example	of	Conway’s	Law	in	action.	Any	organization	that	designs	a	system	(defined	broadly)	will	produce	a	design	whose	structure	is	a	copy	of	the	organization’s	communication	structure.	—	Melvyn	Conway,	1967	Microservices	Architecture	Philosophy	The	philosophy	of	a	microservices	architecture	is	essentially	equal	to
the	Unix	philosophy	of	“Do	one	thing	and	do	it	well”.	The	characteristics	of	a	microservices	architecture	are	as	follows:	Componentization	via	services	Organized	around	business	capabilities	Products	not	projects	Smart	endpoints	and	dumb	pipes	Decentralized	governance	Decentralized	data	management	Infrastructure	automation	Design	for	failure
Evolutionary	design	Why	Microservices?	For	most	developers,	dev	teams,	and	organizations,	it’s	easier	to	work	on	small	“do	one	thing	well”	services.	No	single	program	represents	the	whole	application,	so	services	can	change	frameworks	(or	even	languages)	without	a	massive	cost.	As	long	as	the	services	use	a	language	agnostic	protocol	(HTTP	or
lightweight	messaging),	applications	can	be	written	in	several	different	platforms	-	Java,	Ruby,	Node,	Go,	.NET,	etc.	-	without	issue.	Platform-as-a-Service	(PaaS)	providers	and	containers	have	made	it	easy	to	deploy	microservices.	All	the	technologies	needed	to	support	a	monolith	(e.g.	load	balancing,	discovery,	process	monitoring)	are	provided	by	the
PaaS,	outside	of	your	container.	Deployment	effort	comes	close	to	zero.	Are	Microservices	the	Future?	Architecture	decisions,	like	adopting	microservices,	are	usually	only	evident	several	years	after	you	make	them.	Microservices	have	been	successful	at	companies	like	LinkedIn,	Twitter,	Facebook,	Amazon,	and	Netflix.	But	that	doesn’t	mean	they’ll
be	successful	for	your	organization.	Component	boundaries	are	hard	to	define.	If	you’re	not	able	to	create	your	components	cleanly,	you’re	just	shifting	complexity	from	inside	a	component	to	the	connections	between	the	components.	Also,	team	capabilities	are	something	to	consider.	A	weak	team	will	always	create	a	weak	system.	You	shouldn’t	start
with	a	microservices	architecture.	Instead,	begin	with	a	monolith,	keep	it	modular,	and	split	it	into	microservices	once	the	monolith	becomes	a	problem.	—	Martin	Fowler	Build	a	Microservices	Architecture	with	Spring	Boot,	Spring	Cloud,	and	Netflix	Eureka	Netflix	Eureka	is	a	REST-based	service	that	is	primarily	used	in	the	AWS	cloud	for	locating
services	for	the	purpose	of	load	balancing	and	failover	of	middle-tier	servers.	Spring	Cloud	is	a	developer’s	dream	when	it	comes	to	implementing	and	deploying	a	microservices	architecture.	Spring	Cloud	provides	tools	for	developers	to	quickly	build	some	of	the	common	patterns	in	distributed	systems	(e.g.	configuration	management,	service
discovery,	circuit	breakers,	intelligent	routing,	micro-proxy,	etc.).	Coordination	of	distributed	systems	leads	to	boilerplate	patterns.	Using	Spring	Cloud,	developers	can	quickly	stand	up	services	and	applications	that	implement	those	patterns.	They	will	work	well	in	any	distributed	environment,	including	the	developer’s	own	laptop,	bare	metal	data
centers,	and	managed	platforms	such	as	Cloud	Foundry.	Spring	Cloud	Netflix	provides	Netflix	OSS	integrations	for	Spring	Boot	applications.	Patterns	provided	include	Service	Discovery	(Eureka),	Circuit	Breaker	(Hystrix),	Intelligent	Routing	(Zuul)	and	Client	Side	Load	Balancing	(Ribbon).	To	learn	more	about	service	discovery	and	resolution	with
Eureka,	watch	Josh	Long’s	Microservice	Registration	and	Discovery	with	Spring	Cloud	and	Netflix’s	Eureka.	Create	a	Eureka	Service	To	begin,	create	a	spring-boot-microservices-example	directory	on	your	hard	drive.	Navigate	to	start.spring.io.	Enter	eureka-service	as	an	artifact	name	and	select	Eureka	Server	as	a	dependency.	Click	the	Generate
Project	button	and	expand	eureka-service.zip	into	the	spring-boot-microservices-example	directory.	TIP:	You	could	also	create	your	project	using	start.spring.io’s	API.	The	following	HTTPie	command	will	create	the	same	app	as	the	steps	above:	http	artifactId==eureka-service	bootVersion==2.0.5.RELEASE	\	name==eureka-service
dependencies==cloud-eureka-server	baseDir==eureka-service	|	tar	-xzvf	-	Modify	eureka-service/src/main/resources/application.properties	to	add	a	port	number	and	disable	registration.	server.port=8761	eureka.client.register-with-eureka=false	Open	eureka-service/src/main/java/com/example/eurekaservice/EurekaServiceApplication.java	and	add
@EnableEurekaServer	above	@SpringBootApplication.	import	org.springframework.cloud.netflix.eureka.server.EnableEurekaServer;	@EnableEurekaServer	@SpringBootApplication	This	annotation,	and	the	aforementioned	properties,	configures	a	registry	that	other	applications	can	talk	to.	Start	the	application	from	the	command	line	using:	Or	if
you’re	using	Windows:	After	it	starts,	you	should	be	able	to	open	and	see	there	are	no	services	available.	Create	a	Beer	Catalog	Service	Refresh	start.spring.io	to	start	creating	a	new	project.	Use	beer-catalog-service	for	the	artifact	name	and	add	the	following	dependencies:	Actuator:	features	to	help	you	monitor	and	manage	your	application	Eureka
Discovery:	for	service	registration	JPA:	to	save/retrieve	data	H2:	an	in-memory	database	Rest	Repositories:	to	expose	JPA	repositories	as	REST	endpoints	Web:	Spring	MVC	and	embedded	Tomcat	DevTools:	to	auto-reload	the	application	when	files	change	Lombok:	to	reduce	boilerplate	code	Click	the	Generate	Project	button	and	expand	beer-catalog-
service.zip	into	spring-boot-microservices-example	and	open	the	project	in	your	favorite	IDE.	I	recommend	IntelliJ	IDEA	because	it’s	great	for	Java	and	web	development.	TIP:	To	create	this	same	project	using	start.spring.io’s	API,	run	the	following:	http	artifactId==beer-catalog-service	bootVersion==2.0.5.RELEASE	\	name==beer-catalog-service
dependencies==actuator,cloud-eureka,data-jpa,h2,data-rest,web,devtools,lombok	\	baseDir==beer-catalog-service	|	tar	-xzvf	-	Create	a	Beer	entity,	a	JpaRepository	for	it,	and	a	CommandLineRunner	to	populate	the	database	with	default	data.	You	can	add	this	code	to	BeerCatalogServiceApplication.java,	or	create	separate	files	for	each	class.	The
code	below	assumes	you’re	putting	all	classes	in	the	same	file.	@Data	@AllArgsConstructor	@Entity	class	Beer	{	public	Beer(String	name)	{	this.name	=	name;	}	@Id	@GeneratedValue	private	Long	id;	private	String	name;	}	@RepositoryRestResource	interface	BeerRepository	extends	JpaRepository	{}	@Component	class	BeerInitializer	implements
CommandLineRunner	{	private	final	BeerRepository	beerRepository;	BeerInitializer(BeerRepository	beerRepository)	{	this.beerRepository	=	beerRepository;	}	@Override	public	void	run(String...	args)	throws	Exception	{	Stream.of("Kentucky	Brunch	Brand	Stout",	"Good	Morning",	"Very	Hazy",	"King	Julius",	"Budweiser",	"Coors	Light",	"PBR")
.forEach(beer	->	beerRepository.save(new	Beer(beer)));	beerRepository.findAll().forEach(System.out::println);	}	}	If	you’re	using	an	editor	that	doesn’t	auto-import	classes,	here’s	the	list	of	imports	needed	at	the	top	of	BeerCatalogServiceApplication.java.	import	lombok.AllArgsConstructor;	import	lombok.Data;	import
org.springframework.boot.CommandLineRunner;	import	org.springframework.boot.SpringApplication;	import	org.springframework.boot.autoconfigure.SpringBootApplication;	import	org.springframework.cloud.client.discovery.EnableDiscoveryClient;	import	org.springframework.data.jpa.repository.JpaRepository;	import
org.springframework.data.rest.core.annotation.RepositoryRestResource;	import	org.springframework.stereotype.Component;	import	javax.persistence.Entity;	import	javax.persistence.GeneratedValue;	import	javax.persistence.Id;	import	java.util.stream.Stream;	Add	an	application	name	in	beer-catalog-service/src/main/resources/application.properties
to	display	in	the	Eureka	service,	and	set	the	port	to	8080.	server.port=8080	spring.application.name=beer-catalog-service	Start	the	beer-catalog-service	with	Maven	(mvn	spring-boot:run)	or	your	IDE.	At	this	point,	you	should	be	able	to	use	HTTPie	to	see	the	list	of	beers	from	the	catalog	service.	However,	if	you	open	the	Eureka	Service	at	,	you	will
not	see	the	service	registered.	To	register	the	beer-catalog-service,	you	need	to	add	@EnableDiscoveryClient	to	BeerCatalogServiceApplication.java.	import	org.springframework.cloud.client.discovery.EnableDiscoveryClient;	@EnableDiscoveryClient	@SpringBootApplication	public	class	BeerCatalogServiceApplication	{	public	static	void	main(String[]
args)	{	SpringApplication.run(BeerCatalogServiceApplication.class,	args);	}	}	Re-compile	this	class,	watch	devtools	restart	your	application,	and	return	to	.	If	you’re	not	using	an	IDE,	it	might	be	easiest	to	cancel	and	restart	mvn	spring-boot:run.	Now	the	service	should	show	up.	Compile	on	Save	in	IntelliJ	By	default	IntelliJ	IDEA	does	not	automatically
compile	files	when	the	application	is	running.	To	enable	the	"Compile	on	save"	feature:	Go	to	Preferences	>	Build,	Execution,	Deployment	->	Compiler	and	enable	"Build	project	automatically"	Open	the	Action	window:	Linux:	CTRL+SHIFT+A	Mac:	SHIFT+COMMAND+A	Windows:	CTRL+ALT+SHIFT+/	Enter	Registry...	and	enable
compiler.automake.allow.when.app.running	Create	an	Edge	Service	The	edge	service	will	be	similar	to	the	standalone	beer	service	created	in	Bootiful	Development	with	Spring	Boot	and	Angular.	However,	it	will	have	fallback	capabilities	which	prevent	the	client	from	receiving	an	HTTP	error	when	the	service	is	not	available.	Navigate	to
start.spring.io	and	create	an	edge-service	application	with	the	following	dependencies:	Eureka	Discovery:	for	service	registration	Feign:	a	declarative	web	service	client	Zuul:	provides	intelligent	routing	Rest	Repositories:	to	expose	JPA	repositories	as	REST	endpoints	Web:	Spring	MVC	and	embedded	Tomcat	Hystrix:	a	circuit	breaker	to	stop
cascading	failure	and	enable	resilience	Lombok:	to	reduce	boilerplate	code	Click	the	Generate	Project	button	and	expand	edge-service.zip	into	spring-boot-microservices-example	and	open	the	project	in	your	favorite	IDE.	TIP:	To	create	this	same	project	using	start.spring.io’s	API,	run	the	following:	http	artifactId==edge-service
bootVersion==2.0.5.RELEASE	\	name==edge-service	dependencies==cloud-eureka,cloud-feign,cloud-zuul,data-rest,web,cloud-hystrix,lombok	\	baseDir==edge-service	|	tar	-xzvf	-	Since	the	beer-catalog-service	is	running	on	port	8080,	you’ll	need	to	configure	this	application	to	run	on	a	different	port.	Modify	edge-
service/src/main/resources/application.properties	to	set	the	port	to	8081	and	set	an	application	name.	server.port=8081	spring.application.name=edge-service	To	enable	Feign,	Hystrix,	and	registration	with	the	Eureka	server,	add	the	appropriate	annotations	to	EdgeServiceApplication.java:	package	com.example.edgeservice;	import
com.netflix.hystrix.contrib.javanica.annotation.HystrixCommand;	import	lombok.Data;	import	org.springframework.boot.SpringApplication;	import	org.springframework.boot.autoconfigure.SpringBootApplication;	import	org.springframework.cloud.client.circuitbreaker.EnableCircuitBreaker;	import
org.springframework.cloud.client.discovery.EnableDiscoveryClient;	import	org.springframework.cloud.netflix.feign.EnableFeignClients;	import	org.springframework.cloud.netflix.feign.FeignClient;	import	org.springframework.cloud.netflix.zuul.EnableZuulProxy;	import	org.springframework.hateoas.Resources;	import
org.springframework.web.bind.annotation.*;	import	java.util.ArrayList;	import	java.util.Collection;	import	java.util.stream.Collectors;	@EnableFeignClients	@EnableCircuitBreaker	@EnableDiscoveryClient	@EnableZuulProxy	@SpringBootApplication	public	class	EdgeServiceApplication	{	public	static	void	main(String[]	args)	{
SpringApplication.run(EdgeServiceApplication.class,	args);	}	}	Create	a	Beer	DTO	(Data	Transfer	Object)	in	this	same	file.	Lombok’s	@Data	will	generate	a	toString()	methods,	getters,	setters,	and	appropriate	constructors.	@Data	class	Beer	{	private	String	name;	}	Create	a	BeerClient	interface	that	uses	Feign	to	talk	to	the	beer-catalog-service.
public	class	EdgeServiceApplication	{	public	static	void	main(String[]	args)	{	SpringApplication.run(EdgeServiceApplication.class,	args);	}	}	@Data	class	Beer	{	private	String	name;	}	@FeignClient("beer-catalog-service")	interface	BeerClient	{	@GetMapping("/beers")	Resources	readBeers();	}	Create	a	RestController	below	the	BeerClient	that	filters
out	less-than-great	beers	and	exposes	a	/good-beers	endpoint.	NOTE:	To	get	beer.getName()	to	work	in	your	IDE,	you	may	need	to	install	the	Lombok	plugin.	In	Intellij,	you	can	install	it	by	going	to	Preferences	->	Plugins	->	Browse	Plugins.	Search	for	“lombok	plugin”	and	click	to	install	it.	Restart	Intellij	for	the	changes	to	take	effect.	@RestController
class	GoodBeerApiAdapterRestController	{	private	final	BeerClient	beerClient;	public	GoodBeerApiAdapterRestController(BeerClient	beerClient)	{	this.beerClient	=	beerClient;	}	@GetMapping("/good-beers")	public	Collection	goodBeers()	{	return	beerClient.readBeers()	.getContent()	.stream()	.filter(this::isGreat)	.collect(Collectors.toList());	}	private
boolean	isGreat(Beer	beer)	{	return	!beer.getName().equals("Budweiser")	&&	!beer.getName().equals("Coors	Light")	&&	!beer.getName().equals("PBR");	}	}	Start	the	edge-service	application	with	Maven	or	your	IDE	and	verify	it	registers	successfully	with	the	Eureka	server.	You	should	be	able	to	invoke	the	/good-beers	endpoint	as	well.	$	http
:8081/good-beers	HTTP/1.1	200	Content-Type:	application/json;charset=UTF-8	Date:	Fri,	11	May	2018	17:28:55	GMT	Transfer-Encoding:	chunked	[{	"name":	"Kentucky	Brunch	Brand	Stout"	},	{	"name":	"Good	Morning"	},	{	"name":	"Very	Hazy"	},	{	"name":	"King	Julius"	}]	This	is	cool,	but	if	you	shut	down	the	beer-catalog-service	application,	you’ll
get	a	500	internal	server	error.	$	http	:8081/good-beers	HTTP/1.1	500	Connection:	close	Content-Type:	application/json;charset=UTF-8	Date:	Fri,	11	May	2018	17:35:39	GMT	Transfer-Encoding:	chunked	{	"error":	"Internal	Server	Error",	"message":	"connect	timed	out	executing	GET	,	"path":	"/good-beers",	"status":	500,	"timestamp":	"2018-05-
11T17:35:39.201+0000"	}	To	fix	this,	you	can	use	Hystrix	to	create	a	fallback	method	and	tell	the	goodBeers()	method	to	use	it.	public	Collection	fallback()	{	return	new	ArrayList();	}	@HystrixCommand(fallbackMethod	=	"fallback")	@GetMapping("/good-beers")	public	Collection	goodBeers()	{	return	...	}	Restart	the	edge-service	and	you	should	see
an	empty	list	returned.	$	http	:8081/good-beers	HTTP/1.1	200	Content-Type:	application/json;charset=UTF-8	Date:	Fri,	11	May	2018	17:38:18	GMT	Transfer-Encoding:	chunked	Start	the	beer-catalog-service	again	and	this	list	should	eventually	return	the	full	list	of	good	beer	names.	Add	an	Angular	PWA	Client	You	can	copy	the	Angular	PWA	client	I
created	in	a	previous	tutorial	and	install	its	dependencies.	git	clone	cp	-r	spring-boot-angular-pwa-example/client	~/spring-boot-microservices-example/.	cd	~/spring-boot-microservices-example/client	npm	install	Then	modify	the	BeerService	in	client/src/app/shared/beer/beer.service.ts	to	use	port	8081	instead	of	8080.	getAll():	Observable	{	return
this.http.get(');	}	Modify	GoodBeerApiAdapterRestController	in	EdgeServiceApplication.java	to	allow	cross-origin	requests	from	any	client.	@GetMapping("/good-beers")	@CrossOrigin(origins	=	"*")	public	Collection	goodBeers()	{	Restart	the	edge-service	and	start	the	Angular	client	by	running	npm	start	in	the	client	directory.	Open	in	your	browser
and	verify	that	network	calls	to	/good-beers	go	over	port	8081.	Deploy	to	Cloud	Foundry	In	order	to	deploy	the	edge-service	and	beer-catalog-service	to	Cloud	Foundry,	you	need	to	add	configuration	files	so	they	work	with	Cloud	Foundry’s	Eureka	service.	Create	edge-service/src/main/resources/application-cloud.properties	and	populate	it	with	the
following:	eureka.instance.hostname=${vcap.application.uris[0]:localhost}	eureka.instance.nonSecurePort=80	eureka.instance.metadataMap.instanceId=${vcap.application.instance_id:${spring.application.name}:${spring.application.instance_id:${server.port}}}	eureka.instance.leaseRenewalIntervalInSeconds	=	5	eureka.client.region	=	default
eureka.client.registryFetchIntervalSeconds	=	5	eureka.client.serviceUrl.defaultZone=${vcap.services.pwa-eureka-service.credentials.uri}/eureka/	Create	beer-catalog-service/src/main/resources/application-cloud.properties	and	populate	it	with	similar	properties.	eureka.instance.hostname=${vcap.application.uris[0]:localhost}
eureka.instance.nonSecurePort=80	eureka.instance.metadataMap.instanceId=${vcap.application.instance_id:${spring.application.name}:${spring.application.instance_id:${server.port}}}	eureka.instance.leaseRenewalIntervalInSeconds	=	5	eureka.client.region	=	default	eureka.client.registryFetchIntervalSeconds	=	5
eureka.client.serviceUrl.defaultZone=${vcap.services.pwa-eureka-service.credentials.uri}/eureka/	In	the	properties	above,	pwa-eureka-service	is	the	name	you’ll	give	to	the	Eureka	service	when	you	deploy	it	to	Cloud	Foundry.	To	deploy	it	on	Cloud	Foundry	with	Pivotal	Web	Services,	you’ll	need	to	create	an	account,	download/install	the	Cloud
Foundry	CLI,	and	sign-in	(using	cf	login	-a	api.run.pivotal.io).	There	are	quite	a	few	steps	involved	to	deploy	all	the	services	and	the	Angular	client	for	production.	For	that	reason,	I	wrote	a	deploy.sh	script	that	automates	everything.	TIP:	If	you	receive	an	error	stating	that	you’re	using	too	much	memory,	you	may	have	to	upgrade	your	Cloud	Foundry
subscription.	When	to	Use	Microservices	Building	a	microservices	architecture	is	something	you	should	consider	when	you’re	having	difficulty	scaling	development	in	a	large	team.	From	a	development	standpoint,	moving	to	microservices	will	not	reduce	complexity,	but	will	likely	increase	it	you	move	to	a	distributed	system.	Automation	and
orchestration	are	key	for	deployment.	You	should	make	sure	to	define	your	exit	criteria	(e.g.	maximum	time	for	a	request	to	execute)	before	implementing	your	microservices	infrastructure.	You’re	likely	going	to	have	to	custom	build	some	things,	so	be	prepared	for	that.	Trial	a	few	different	platforms	and	then	pick	the	one	that	meets	your	criteria	and
is	the	easiest	to	develop	with.	Don’t	develop	half	of	your	system	on	one	platform	and	then	try	moving	to	another.	Another	tip	is	to	make	sure	and	record	the	request	ID	in	all	logging	events	for	traceability.	If	you	have	fewer	than	20	developers,	start	with	a	monolith,	but	build	in	async	messaging	as	soon	as	possible.	Use	it	for	things	like	mail,
notifications,	logging,	and	archiving.	Debugging,	deployment,	and	logging	are	much	easier	with	a	monolith	because	everything	is	contained	in	one	application.	Also,	consider	using	async	messaging	or	other	non-blocking	communication	methods	with	automatic	back	pressure.	HTTP	is	a	synchronous	protocol	and	can	be	a	limiting	factor	in	high-traffic
systems.	Learn	More	about	Microservice	Architectures	Spring	Boot	isn’t	the	only	framework	to	implement	embedded	servlet	containers	or	make	it	easy	to	develop	microservices.	In	Javaland,	there’s	Dropwizard,	MicroProfile	for	Java	EE,	Lagom,	and	Vert.x,	and	Tribestream.	You	can	find	the	source	code	for	this	article’s	applications	on	GitHub	at	.	You
can	also	watch	a	video	of	me	and	Josh	Long	developing	these	applications	in	a	YouTube	recording	of	our	Cloud	Native	PWAs	presentation	at	Devoxx	France,	2017.	If	you	have	any	questions	about	this	article,	you	can	email	me	at	matt.raible@okta.com,	post	a	question	to	Stack	Overflow	with	the	Okta	tag,	post	to	our	Developer	Forums,	or	create	an
issue	on	GitHub.	Update:	To	learn	about	how	security	fits	into	all	this,	see	Secure	a	Spring	Microservices	Architecture	with	Spring	Security,	JWTs,	Juiser,	and	Okta.	Update	2:	To	learn	how	to	lock	this	application	down	with	Spring	Security	and	OAuth,	see	Secure	a	Spring	Microservices	Architecture	with	Spring	Security	and	OAuth	2.0.	Page	4	JHipster
is	one	of	those	open-source	projects	you	stumble	upon	and	immediately	think,	“Of	course!”	It	combines	three	very	successful	frameworks	in	web	development:	Bootstrap,	Angular,	and	Spring	Boot.	Bootstrap	was	one	of	the	first	dominant	web-component	frameworks.	Its	largest	appeal	was	that	it	only	required	a	bit	of	HTML	and	it	worked!	Bootstrap
showed	many	in	the	Java	community	how	to	develop	components	for	the	web.	It	leveled	the	playing	field	in	HTML/CSS	development,	much	like	Apple’s	Human	Interface	Guidelines	did	for	iOS	apps.	At	its	core,	JHipster	is	a	Yeoman	generator.	Yeoman	is	a	code	generator	that	you	run	with	a	yo	command	to	generate	complete	applications	or	useful
pieces	of	an	application.	Yeoman	generators	promote	what	the	Yeoman	team	calls	the	“Yeoman	workflow”.	This	is	an	opinionated	client-side	stack	of	tools	that	can	help	developers	quickly	build	beautiful	web	applications.	It	takes	care	of	providing	everything	needed	to	get	working	without	the	normal	pains	associated	with	a	manual	setup.	Learn	more
about	JHipster,	including	its	origin,	at	.	This	tutorial	shows	you	how	to	build	a	microservices	architecture	with	JHipster	4.5.4.	You’ll	generate	a	gateway	(powered	by	Netflix	Zuul	and	the	JHipster	Gateway),	a	microservice	(that	talks	to	MongoDB),	and	use	Docker	Compose	to	make	sure	it	all	runs	locally.	Then	you’ll	deploy	it	to	Minikube	and	Google
Cloud	using	Kubernetes.	Install	JHipster	4	The	Installing	JHipster	instructions	show	you	all	the	tools	you’ll	need	to	use	a	released	version	of	JHipster.	Microservices	with	JHipster	To	build	a	microservices	architecture	with	JHipster,	you’ll	need	to	generate	two	applications	and	clone	another.	Generate	a	gateway	Generate	a	microservice	Clone	the
JHipster	Registry	You	can	see	how	these	components	fit	in	the	diagram	below.	To	see	what’s	happening	inside	your	applications,	you	can	use	the	JHipster	Console,	a	monitoring	tool	based	on	the	ELK	Stack.	I’ll	cover	JHipster	Console	in	the	Docker	Compose	section.	Create	an	API	Gateway	To	create	a	microservices	project,	open	a	terminal	window	and
create	a	jhipster-microservices-example	directory.	Then	create	a	blog	directory	for	the	gateway	application.	mkdir	-p	jhipster-microservices-example/blog	In	JHipster	terms,	a	gateway	is	a	normal	JHipster	application.	This	means	you	can	develop	it	like	a	monolith,	but	it	also	acts	as	the	entrance	to	your	microservices.	More	specifically,	it	provides	HTTP
routing	and	load	balancing,	quality	of	service,	security,	and	API	documentation	for	all	microservices.	In	a	terminal,	navigate	to	the	blog	directory	and	run	jhipster.	cd	jhipster-microservices-example/blog	jhipster	JHipster	prompts	you	with	many	questions	about	the	type	of	application	you	want	to	generate	and	what	features	you’d	like	to	include.	Create
the	blog	application	with	the	following	settings:	Application	type:	Microservice	gateway	Base	name	of	the	application:	blog	Port:	8080	Default	package	name:	org.jhipster.blog	JHipster	Registry:	Yes	Type	of	authentication:	JWT	Type	of	database:	SQL	Production	database:	PostgreSQL	Development	database:	H2	with	disk-based	persistence	Maven	or
Gradle:	Maven	Other	technologies:	Elasticsearch	Client	framework:	Angular	4	Sass	for	CSS:	Yes	Internationalization	support:	Yes	Native	language:	English	Additional	languages:	Spanish	Testing	frameworks:	Gatling,	Protractor	Install	other	generators	from	the	JHipster	Marketplace:	No	If	you’d	like	to	use	the	same	settings	I	did,	you	can	place	the
following	.yo-rc.json	file	in	the	blog	directory	and	run	jhipster	in	it.	You	won’t	be	prompted	to	answer	any	questions	because	the	answers	are	already	in	.yo-rc.json.	{	"generator-jhipster":	{	"promptValues":	{	"packageName":	"org.jhipster.blog",	"nativeLanguage":	"en"	},	"jhipsterVersion":	"4.5.4",	"baseName":	"blog",	"packageName":
"org.jhipster.blog",	"packageFolder":	"org/jhipster/blog",	"serverPort":	"8080",	"authenticationType":	"jwt",	"hibernateCache":	"hazelcast",	"clusteredHttpSession":	false,	"websocket":	false,	"databaseType":	"sql",	"devDatabaseType":	"h2Disk",	"prodDatabaseType":	"postgresql",	"searchEngine":	"elasticsearch",	"messageBroker":	false,
"serviceDiscoveryType":	"eureka",	"buildTool":	"maven",	"enableSocialSignIn":	false,	"jwtSecretKey":	"f7450a034a7251b3d201cf5139852f9adf69c2d1",	"clientFramework":	"angular2",	"useSass":	true,	"clientPackageManager":	"yarn",	"applicationType":	"gateway",	"testFrameworks":	["gatling",	"protractor"],	"jhiPrefix":	"jhi",	"enableTranslation":
true,	"nativeLanguage":	"en",	"languages":	["en",	"es"]	}	}	The	project	creation	process	will	take	a	couple	of	minutes	to	run,	depending	on	your	internet	connection	speed.	When	it’s	finished,	you	should	see	output	like	this:	Before	you	can	run	this	project,	you’ll	need	to	download	and	start	an	instance	of	the	JHipster	Registry.	Run	the	following
commands	in	the	jhipster-microservices-example	directory.	git	clone	git@github.com:jhipster/jhipster-registry.git	registry	cd	registry	&&	yarn	&&	./mvnw	The	JHipster	Registry	is	built	on	Spring	Cloud	Netflix	and	Spring	Cloud	Config.	Patterns	provided	by	Spring	Cloud	Netflix	include	Service	Discovery	(Eureka),	Circuit	Breaker	(Hystrix),	Intelligent
Routing	(Zuul),	and	Client	Side	Load	Balancing	(Ribbon).	In	a	previous	post,	I	showed	you	how	you	can	use	Eureka	for	service	discovery.	JHipster	Registry	is	a	Eureka	server,	a	Spring	Cloud	Config	server,	as	well	as	an	administration	server.	It	includes	dashboards	to	monitor	and	manage	your	JHipster	applications.	JHipster	Registry	starts	on	port
8761	by	default.	In	a	new	terminal	window,	navigate	to	jhipster-microservices-example/blog	and	run	./mvnw	to	start	the	blog	application	and	open	in	your	favorite	browser.	The	first	thing	you’ll	notice	is	a	dapper-looking	fellow	explaining	how	you	can	sign	in	or	register.	Sign	in	with	username	admin	and	password	admin	and	you’ll	have	access	to
navigate	through	the	Administration	section.	This	section	offers	nice	looking	UIs	on	top	of	some	Spring	Boot’s	many	monitoring	and	configuration	features.	It	also	allows	you	to	administer	users:	It	gives	you	insights	into	Application	and	JVM	metrics:	And	it	allows	you	to	see	the	Swagger	docs	associated	with	its	API.	You	can	run	the	following	command
(in	a	separate	terminal	window)	to	start	the	Protractor	tests	and	confirm	everything	is	working	properly.	At	this	point,	it’s	a	good	idea	to	check	your	project	into	Git	so	you	can	easily	see	what	changes	are	made	going	forward.	git	init	git	add	.	git	commit	-m	"Gateway	created"	Shut	down	your	blog	application	before	proceeding	to	the	next	section.
Generate	Entities	For	each	entity	you	want	to	create,	you	will	need:	A	database	table	A	Liquibase	change	set	A	JPA	entity	class	A	Spring	Data	JpaRepository	interface	A	Spring	MVC	RestController	class	An	Angular	model,	state,	component,	dialog	components,	service	Several	HTML	pages	for	each	component	Also,	you	should	have	integration	tests	to
verify	that	everything	works	and	performance	tests	to	verify	that	it	runs	fast.	In	an	ideal	world,	you’d	also	have	unit	tests	and	integration	tests	for	your	Angular	code.	The	good	news	is	JHipster	can	generate	all	of	this	code	for	you,	including	integration	tests	and	performance	tests.	In	addition,	if	you	have	entities	with	relationships,	it	will	generate	the
necessary	schema	to	support	them	(with	foreign	keys),	and	the	TypeScript	and	HTML	code	to	manage	them.	You	can	also	set	up	validation	to	require	certain	fields,	as	well	as	control	their	length.	JHipster	supports	several	methods	of	code	generation.	The	first	uses	its	entity	sub-generator.	The	entity	sub-generator	is	a	command-line	tool	that	prompts
you	with	questions	which	you	answer.	JDL-Studio	is	a	browser-based	tool	for	defining	your	domain	model	with	JHipster	Domain	Language	(JDL).	Finally,	JHipster-UML	is	an	option	for	those	that	like	UML.	Supported	UML	editors	include	Modelio,	UML	Designer,	GenMyModel,	and	Visual	Paradigm.	I	like	the	visual	nature	of	JDL-Studio,	so	I’ll	use	it	for
this	project.	Below	is	the	entity	diagram	and	JDL	code	needed	to	generate	a	simple	blog	with	blogs,	entries,	and	tags.	You	can	click	on	this	URL,	or	copy/paste	the	contents	of	the	file	below	to	your	hard	drive	if	you’d	like	to	follow	along.	entity	Blog	{	name	String	required	minlength(3),	handle	String	required	minlength(2)	}	entity	Entry	{	title	String
required,	content	TextBlob	required,	date	ZonedDateTime	required	}	entity	Tag	{	name	String	required	minlength(2)	}	relationship	ManyToOne	{	Blog{user(login)}	to	User,	Entry{blog(name)}	to	Blog	}	relationship	ManyToMany	{	Entry{tag(name)}	to	Tag{entry}	}	paginate	Entry,	Tag	with	infinite-scroll	Run	the	following	command	(in	the	blog
directory)	to	import	this	file.	Running	this	command	will	generate	entities,	tests,	and	a	UI.	jhipster	import-jdl	~/Downloads/jhipster-jdl.jh	You’ll	be	prompted	to	overwrite	src/main/resources/config/liquibase/master.xml.	Type	a	to	overwrite	this	file,	as	well	as	others.	Start	the	application	with	/.mvnw	and	run	yarn	start	(in	another	window)	to	view	the
UI	for	the	generated	entities.	Create	a	couple	of	blogs	for	the	existing	admin	and	user	users,	as	well	as	a	few	blog	entries.	From	these	screenshots,	you	can	see	that	users	can	see	each	other’s	data,	and	modify	it.	Now,	check	your	generated	entities	into	Git.	git	init	git	add	.	git	commit	-m	"Entities	generated"	Add	Business	Logic	TIP:	To	configure	an
IDE	with	your	JHipster	project,	see	Configuring	your	IDE.	Instructions	exist	for	Eclipse,	IntelliJ	IDEA,	Visual	Studio	Code,	and	NetBeans.	To	add	more	security	around	blogs	and	entries,	open	BlogResource.java	and	find	the	getAllBlogs()	method.	Change	the	following	line:	List	blogs	=	blogRepository.findAll();	To:	List	blogs	=
blogRepository.findByUserIsCurrentUser();	The	findByUserIsCurrentUser()	method	is	generated	by	JHipster	in	the	BlogRepository	class	and	allows	limiting	results	by	the	current	user.	public	interface	BlogRepository	extends	JpaRepository	{	@Query("select	blog	from	Blog	blog	where	blog.user.login	=	?#{principal.username}")	List
findByUserIsCurrentUser();	}	After	making	this	change,	re-compiling	BlogResource	should	trigger	a	restart	of	the	application	thanks	to	Spring	Boot’s	Developer	tools.	If	you	navigate	to	you	should	only	see	the	blog	for	the	current	user.	To	add	this	same	logic	for	entries,	open	EntryResource.java	and	find	the	getAllEntries()	method.	Change	the
following	line:	Page	page	=	entryRepository.findAll(pageable);	To:	Page	page	=	entryRepository.findByBlogUserLoginOrderByDateDesc(SecurityUtils.getCurrentUserLogin(),	pageable);	Using	your	IDE,	create	this	method	in	the	EntryRepository	class.	It	should	look	as	follows:	Page	findByBlogUserLoginOrderByDateDesc(String	currentUserLogin,
Pageable	pageable);	Recompile	both	changed	classes	and	verify	that	the	user	user	only	sees	the	entries	you	created	for	them.	After	making	this	changes,	commit	them	to	Git.	git	add	.	git	commit	-m	"Add	business	logic"	You	might	notice	that	this	application	doesn’t	look	like	a	blog	and	it	doesn’t	allow	HTML	in	the	content	field.	Make	UI	Enhancements
When	doing	UI	development	on	a	JHipster-generated	application,	it’s	nice	to	see	your	changes	as	soon	as	you	save	a	file.	JHipster	4	uses	Browsersync	and	webpack	to	power	this	feature.	You	enable	this	previously	by	running	the	following	command	in	the	blog	directory.	In	this	section,	you’ll	change	the	following:	Change	the	rendered	content	field	to
display	HTML	Change	the	list	of	entries	to	look	like	a	blog	Allow	HTML	If	you	enter	HTML	in	the	content	field	of	a	blog	entry,	you’ll	notice	it’s	escaped	on	the	list	screen.	To	change	this	behavior,	open	entry.component.html	and	change	the	following	line:	{{entry.content}}	To:	After	making	this	change,	you’ll	see	that	the	HTML	is	no	longer	escaped.
Improve	the	layout	To	make	the	list	of	entries	look	like	a	blog,	replace	with	HTML,	so	it	uses	a	stacked	layout	in	a	single	column.	{{entry.title}}	Posted	on	{{entry.date	|	date:	'short'}}	by	{{entry.blog.user.login}}	Edit	Delete	Now	it	looks	more	like	a	regular	blog!	Commit	all	your	changes	to	Git.	git	add	.	git	commit	-m	"UI	enhancements"	Create	a
Microservice	To	generate	a	store	microservice,	open	a	terminal	window	and	navigate	to	the	jhipster-microservices-example	directory.	Create	a	store	directory	and	run	jhipster	in	it.	cd	~/jhipster-microservices-example	mkdir	store	cd	store	jhipster	Use	the	following	settings	to	generate	a	microservice	that	uses	MongoDB	for	its	database.	Application
type:	Microservice	application	Base	name	of	the	application:	store	Port:	8081	Default	package	name:	org.jhipster.store	Type	of	authentication:	JWT	Use	JHipster	Registry:	Yes	Type	of	database:	MongoDB	Maven	or	Gradle:	Maven	Other	technologies:	None	Internationalization	support:	Yes	Native	language:	English	Additional	languages:	Spanish
Testing	frameworks:	Gatling	Install	other	generators	from	the	JHipster	Marketplace:	No	The	.yo-rc.json	created	by	this	process	is	as	follows:	{	"generator-jhipster":	{	"promptValues":	{	"packageName":	"org.jhipster.store",	"nativeLanguage":	"en"	},	"jhipsterVersion":	"4.5.4",	"baseName":	"store",	"packageName":	"org.jhipster.store",	"packageFolder":
"org/jhipster/store",	"serverPort":	"8081",	"authenticationType":	"jwt",	"hibernateCache":	"no",	"clusteredHttpSession":	false,	"websocket":	false,	"databaseType":	"mongodb",	"devDatabaseType":	"mongodb",	"prodDatabaseType":	"mongodb",	"searchEngine":	false,	"messageBroker":	false,	"serviceDiscoveryType":	"eureka",	"buildTool":	"maven",
"enableSocialSignIn":	false,	"jwtSecretKey":	"ea21b5b635606be4d7937e29926166e0ee56abb1",	"enableTranslation":	true,	"applicationType":	"microservice",	"testFrameworks":	["gatling"],	"jhiPrefix":	"jhi",	"skipClient":	true,	"skipUserManagement":	true,	"nativeLanguage":	"en",	"languages":	["en",	"es"],	"clientPackageManager":	"yarn"	}	}	Commit
your	changes	to	Git.	It’s	always	a	good	idea	to	do	this	before	generating	entities.	cd	~/jhipster-microservices-example/	git	add	store	git	commit	-m	"Generate	store	application"	Generate	Product	Entity	Create	a	product	entity	by	running	the	following	command	in	the	store	directory.	Use	the	following	answers	for	the	questions	asked:	Do	you	want	to
add	a	field	to	your	entity?	Yes	What	is	the	name	of	your	field?	name	What	is	the	type	of	your	field?	String	Do	you	want	to	add	validation	rules	to	your	field?	Yes	Which	validation	rules	do	you	want	to	add?	Required	Do	you	want	to	add	a	field	to	your	entity?	Yes	What	is	the	name	of	your	field?	price	What	is	the	type	of	your	field?	BigDecimal	Do	you	want
to	add	validation	rules	to	your	field?	Yes	Which	validation	rules	do	you	want	to	add?	Required	Do	you	want	to	add	a	field	to	your	entity?	No	Do	you	want	to	use	a	Data	Transfer	Object	(DTO)?	No	Do	you	want	to	use	separate	service	class	for	your	business	logic?	No	Do	you	want	pagination	on	your	entity?	Yes,	with	pagination	links	Your	terminal	should
look	similar	to	the	following	after	you’ve	answered	all	these	questions.	Generate	UI	for	Product	Entity	A	microservice	only	contains	the	server-side	code	for	the	entities	it	contains.	To	generate	an	Angular	UI	for	the	product,	navigate	to	the	blog	directory	and	run	the	same	command.	Use	the	following	answers	to	the	questions	asked:	Do	you	want	to
generate	this	entity	from	an	existing	microservice?	Yes	Enter	the	path	to	the	microservice	root	directory:	../store	Do	you	want	to	update	the	entity?	Yes	A	visual	of	these	questions	and	answers	is	in	the	screenshot	below.	Commit	your	changes	to	Git.	cd	~/jhipster-microservices-example	git	add	.	git	commit	-m	"Add	product	entity"	At	this	point,	you
should	be	able	to	verify	everything	works	by	starting	the	registry,	blog,	store,	and	MongoDB.	You	can	run	MongoDB	using	Docker	Compose	with	the	following	command	in	the	store	directory.	You’ll	need	to	have	Docker	installed	and	running	for	this	command	to	work.	docker-compose	-f	src/main/docker/mongodb.yml	up	The	Docker	Compose	section
shows	how	you	can	run	all	your	services	using	Docker.	Navigate	to	,	log	in	with	admin/admin,	and	go	to	Entities	>	Product.	You	should	be	able	to	add	a	product	and	see	that	it	has	a	MongoDB	identifier.	Build	for	Production	A	JHipster	application	can	be	deployed	anywhere	a	Spring	Boot	application	can	be	deployed.	Its	Angular	client	is	bundled	inside
its	JAR	files.	JHipster	ships	with	support	for	deploying	to	Cloud	Foundry,	Heroku,	Kubernetes,	AWS,	and	AWS	with	Boxfuse.	When	you	prepare	a	JHipster	application	for	production,	it’s	recommended	to	use	the	pre-configured	“production”	profile.	With	Maven,	you	can	package	your	application	by	specifying	the	prod	profile	when	building.	The
production	profile	is	used	to	build	an	optimized	JavaScript	client.	You	can	invoke	this	using	webpack	by	running	yarn	run	webpack:prod.	The	production	profile	also	configures	gzip	compression	with	a	servlet	filter,	cache	headers,	and	monitoring	via	Metrics.	If	you	have	a	Graphite	server	configured	in	your	application-prod.yml	file,	your	application
will	automatically	send	metrics	data	to	it.	When	you	run	this	command	in	the	blog	application,	you’ll	likely	get	a	test	failure.	Results	:	Failed	tests:	BlogResourceIntTest.getAllBlogs:184	Status	expected:	but	was:	Tests	run:	157,	Failures:	1,	Errors:	0,	Skipped:	0	The	reason	this	happens	is	shown	in	a	stack	trace	in	your	terminal.	Running
org.jhipster.blog.web.rest.BlogResourceIntTest	2017-06-19	10:29:17.288	ERROR	4168	---	[main]	o.j.b.w.rest.errors.ExceptionTranslator	:	An	unexpected	error	occured:	Authentication	object	cannot	be	null;	nested	exception	is	java.lang.IllegalArgumentException:	Authentication	object	cannot	be	null	2017-06-19	10:29:17.472	ERROR	4168	---	[main]
o.j.blog.web.rest.util.HeaderUtil	:	Entity	processing	failed,	A	new	blog	cannot	already	have	an	ID	To	fix	this,	you	can	use	Spring	Security	Test’s	@WithMockUser.	Open	BlogResourceIntTest.java	and	inject	UserRepository	as	a	dependency.	@Autowired	private	UserRepository	userRepository;	Change	the	createEntity()	method,	so	it’s	not	static	and	uses
the	userRepository	to	set	a	user	on	the	blog	entity.	public	Blog	createEntity(EntityManager	em)	{	Blog	blog	=	new	Blog()	.name(DEFAULT_NAME)	.handle(DEFAULT_HANDLE)	.user(userRepository.findOneByLogin("user").get());	return	blog;	}	Add	@WithMockUser	to	the	getAllBlogs()	method.	@Test	@Transactional	@WithMockUser	public	void
getAllBlogs()	throws	Exception	{	Commit	your	changes	to	Git.	git	add	.	git	commit	-m	"Fix	tests"	After	fixing	this	test,	you	should	be	able	to	run	./mvnw	-Pprod	package	without	any	failures.	You	might	notice	that	this	does	take	quite	some	time,	mostly	due	to	the	Webpack	build	and	optimizations.	Below	is	the	output	from	a	Mid	2015	MacBook	Pro	with
16GB	of	RAM	and	JAVA_OPTS	set	to	-Xmx2048m.	[INFO]	--	[INFO]	BUILD	SUCCESS	[INFO]	--	[INFO]	Total	time:	04:38	min	[INFO]	Finished	at:	2017-06-19T10:39:09-06:00	[INFO]	Final	Memory:	75M/747M	[INFO]	---
-----	Deploy	to	the	Cloud	What	good	is	a	microservices	architecture	if	it’s	not	deployed	to	a	PaaS	(Platform	as	a	Service)?!	PaaS	providers	are	also	known	as	“the	cloud”,	and	allow	you	to	deploy	and	scale	microservices	as	needed.	Docker	provides	a	mechanism	to	“package”	your	applications	as	an	entire	bundle.	A	Docker	container	includes	the
operating	system	and	services	needed	to	run	your	application.	Often,	Docker	containers	are	used	for	the	individual	components	of	your	architecture.	For	example,	you’ll	have	a	Docker	container	for	each	app,	as	well	as	one	for	PostgreSQL,	MongoDB,	and	Elasticsearch.	To	complete	this	section,	you’ll	need	to	install	Docker.	NOTE:	If	you’re	not	on	Mac
or	Windows,	you	may	need	to	install	Docker	Compose	as	well.	Run	with	Docker	Compose	Docker	Compose	is	a	tool	for	defining	and	running	multi-container	Docker	applications.	With	Compose,	you	can	create	and	start	all	the	components	of	your	application	with	a	single	command.	Make	sure	Docker	is	running	Build	Docker	images	for	the	blog	and
store	applications	by	running	the	following	command	in	both	directories:	./mvnw	package	-Pprod	docker:build	Using	your	terminal,	navigate	to	the	root	directory	of	your	project,	and	create	a	docker	directory.	Then	run	the	JHipster	Docker	Compose	sub-generator	in	it.	Application	type:	Microservice	application	Root	directory	of	your	microservices:	../
Applications	to	include:	blog	and	store	Applications	with	clustered	databases:	None	Set	up	monitoring:	JHipster	Console	with	ELK/Zipkin	The	admin	password	for	the	JHipster	Registry:	admin	Run	docker-compose	up	to	run	all	your	services	and	see	the	logs	in	the	same	window.	Add	-d	if	you	want	to	run	them	as	a	daemon	Use	Kitematic	to	view	the
ports	and	logs	for	the	services	deployed	You	can	view	the	JHipster	Registry	at	.	To	produce	data	for	the	JHipster	Console	to	display,	run	some	Gatling	tests	in	the	blog	app.	These	simulations	can	take	a	while	(>	10m)	to	complete.	When	they’re	finished,	you	can	view	their	pretty	reports.	You	can	see	the	JHipster	Console	at	.	Navigate	to	Dashboards	>
Open	to	display	some	pre-built	dashboards	for	the	JVM,	logs,	metrics,	microservices,	and	performance.	The	screenshots	below	show	you	what	some	of	these	look	like.	To	save	your	changes	for	Docker	Compose,	commit	your	changes	to	Git.	git	add	.	git	commit	-m	"Add	Docker	Compose"	Run	with	Kubernetes	and	Minikube	Kubernetes	is	an	open-source
system	for	automating	deployment,	scaling,	and	management	of	containerized	applications.	It	was	developed	at	Google	over	the	last	16	years	and	was	internally	called	Borg.	To	deploy	Docker	containers	with	Kubernetes,	you	set	up	a	cluster,	then	deploy	to	it.	The	context	can	be	local	(with	Minikube),	or	remote	(e.g.	a	Raspberry	Pi	cluster,	Google
Cloud,	AWS,	OpenShift,	etc.).	Follow	the	steps	below	to	use	Kubernetes	to	deploy	to	a	local	cluster.	Install	kubectl,	VirtualBox	and	Minikube	Start	Minikube	using	minikube	start	To	be	able	to	work	with	the	docker	daemon,	run	the	following	command	in	your	terminal:	eval	$(minikube	docker-env)	Create	Docker	images	of	the	blog	and	store
applications:	./mvnw	package	-Pprod	docker:build	Using	your	terminal,	navigate	to	the	root	directory	of	your	project,	and	create	a	kubernetes	directory.	Then	run	the	JHipster	Kubernetes	sub-generator	in	it.	Application	type:	Microservice	application	Root	directory	of	your	microservices:	../	Applications	to	include:	blog	and	store	The	admin	password
for	the	JHipster	Registry:	admin	Kubernetes	namespace:	default	Base	Docker	repository	name	(e.g.	mraible):	Command	to	push	Docker	image	to	repository:	docker	push	Run	the	following	commands	to	tag	your	Docker	images.	The	Kubernetes	sub-generator	says	to	run	docker	push	as	well,	but	you	don’t	need	that	for	a	Minikube	deployment.	docker
image	tag	blog	mraible/blog	docker	image	tag	store	mraible/store	Run	the	following	commands	in	the	kubernetes	directory	to	deploy	to	Minikube.	kubectl	apply	-f	registry	kubectl	apply	-f	blog	kubectl	apply	-f	store	The	deployment	process	can	take	several	minutes	to	complete.	Run	minikube	dashboard	to	see	the	deployed	containers.	You	can	also	run
kubectl	get	po	-o	wide	--watch	to	see	the	status	of	each	pod.	Run	minikube	service	blog	to	view	the	blog	application.	You	should	be	able	to	login	and	add	blogs,	entries,	and	products.	To	remove	all	deployed	containers,	run	the	following	command:	kubectl	delete	deployment	--all	To	stop	Minikube,	run	minikube	stop.	To	save	your	changes	for
Kubernetes,	commit	your	changes	to	Git	from	the	top-level	directory.	git	add	.	git	commit	-m	"Kubernetes"	Deploy	to	Google	Cloud	Google	Cloud	is	a	PaaS	that’s	built	on	Google’s	core	infrastructure.	It’s	one	of	the	easiest	providers	to	support	Kubernetes.	Complete	the	steps	below	to	deploy	your	hip	microservices	to	Google	Cloud.	If	you	completed	the
Minikube	section	above,	open	a	new	terminal	window	to	reset	things.	Create	a	Google	Cloud	project	at	console.cloud.google.com	Navigate	to	to	initialize	the	Container	Engine	for	your	project	Install	Google	Cloud	SDK	and	set	project	using:	gcloud	config	set	project	Create	a	cluster:	gcloud	container	clusters	create	--machine-type=n1-standard-2	--
scopes	cloud-platform	--zone	us-west1-a	To	see	a	list	of	possible	zones,	run	gcloud	compute	zones	list.	Push	the	blog	and	store	docker	images	to	Docker	Hub.	You	will	need	to	create	an	account	and	run	docker	login	to	push	your	images.	The	images	can	be	run	from	any	directory.	docker	image	tag	blog	mraible/blog	docker	push	mraible/blog	docker
image	tag	store	mraible/store	docker	push	mraible/store	Run	kubectl	commands	to	deploy	kubectl	apply	-f	registry	kubectl	apply	-f	blog	kubectl	apply	-f	store	Use	port-forwarding	to	see	the	registry	app	locally	kubectl	port-forward	jhipster-registry-0	8761:8761	Run	kubectl	get	service	blog	to	get	the	external	IP	of	the	blog	application	on	Google	Cloud.
Open	http://:8080	to	view	your	running	application	and	verify	everything	works.	Scale	microservice	apps	as	needed	with	kubectl:	kubectl	scale	--replicas=3	deployment/store	Did	you	get	everything	working?	If	so,	you	rock!	You’ve	built	a	production-ready	microservices	scaffold	for	your	application	with	JHipster!	Issues	Found	While	creating	this
example,	I	ran	into	a	few	issues.	Alert	translations	not	resolved	in	the	gateway	for	microservice	entities.	The	workaround	is	to	open	the	src/main/webapp/i18n/*/product.json	files	and	move	the	keys	from	storeApp	to	blogApp.	See	issue	#5960	for	more	information.	In	production	mode,	new	entries	don’t	show	in	the	list.	The	logs	have	an	error	like	the
following:	2017-06-19	18:08:06.930	ERROR	17597	---	[XNIO-2	task-62]	o.j.b.w.rest.errors.ExceptionTranslator	:	An	unexpected	error	occured:	Unable	to	access	lob	stream;	nested	exception	is	org.hibernate.HibernateException:	Unable	to	access	lob	stream	This	is	a	known	issue	with	PostgreSQL.	Adding	@Transactional	to	the	EntryResource.java	class
definition	solved	this	problem.	When	running	everything	in	Minikube,	adding	new	products	fails.	Upgrading	to	JHipster	Registry	3.0.2	solved	this	issue.	See	this	commit	to	see	how	to	upgrade.	Source	Code	and	Screencast	The	source	code	for	this	tutorial	is	available	on	GitHub.	See	its	README	if	you	simply	want	to	clone	the	project	and	run	it.	Or,	you
can	watch	a	screencast	of	building	microservices	with	JHipster	and	deploying	to	Google	Cloud.	Learn	More	about	JHipster	and	Microservices	I	hope	you’ve	enjoyed	learning	how	JHipster	can	help	you	develop	hip	microservice	architectures!	It’s	a	nifty	project,	with	an	easy-to-use	entity	generator,	a	beautiful	UI,	and	many	Spring	Boot	best-practice
patterns.	If	you	have	features	you’d	like	to	add	or	if	you’d	like	to	refine	existing	features,	you	can	watch	the	project	on	GitHub	and	help	with	its	development	and	support.	We’re	always	looking	for	help!	If	you	have	questions	about	JHipster,	please	hit	me	up	on	Twitter	or	post	a	question	to	Stack	Overflow	with	the	“jhipster”	tag.	If	you’re	interested	in
learning	more	about	microservices,	you	might	also	find	the	following	resources	useful:	Page	5	There’s	a	lot	of	confusion	around	what	OAuth	actually	is.	Some	people	think	OAuth	is	a	login	flow	(like	when	you	sign	into	an	application	with	Google	Login),	and	some	people	think	of	OAuth	as	a	“security	thing”,	and	don’t	really	know	much	more	than	that.
I’m	going	to	show	you	what	OAuth	is,	explain	how	it	works,	and	hopefully	leave	you	with	a	sense	of	how	and	where	OAuth	can	benefit	your	application.	What	Is	OAuth?	To	begin	at	a	high	level,	OAuth	is	not	an	API	or	a	service:	it’s	an	open	standard	for	authorization	and	anyone	can	implement	it.	More	specifically,	OAuth	is	a	standard	that	apps	can	use
to	provide	client	applications	with	“secure	delegated	access”.	OAuth	works	over	HTTPS	and	authorizes	devices,	APIs,	servers,	and	applications	with	access	tokens	rather	than	credentials.	There	are	two	versions	of	OAuth:	OAuth	1.0a	and	OAuth	2.0.	These	specifications	are	completely	different	from	one	another,	and	cannot	be	used	together:	there	is
no	backwards	compatibility	between	them.	Which	one	is	more	popular?	Great	question!	Nowadays,	OAuth	2.0	is	the	most	widely	used	form	of	OAuth.	So	from	now	on,	whenever	I	say	“OAuth”,	I’m	talking	about	OAuth	2.0	–	as	it’s	most	likely	what	you’ll	be	using.	Why	OAuth?	OAuth	was	created	as	a	response	to	the	direct	authentication	pattern.	This
pattern	was	made	famous	by	HTTP	Basic	Authentication,	where	the	user	is	prompted	for	a	username	and	password.	Basic	Authentication	is	still	used	as	a	primitive	form	of	API	authentication	for	server-side	applications:	instead	of	sending	a	username	and	password	to	the	server	with	each	request,	the	user	sends	an	API	key	ID	and	secret.	Before
OAuth,	sites	would	prompt	you	to	enter	your	username	and	password	directly	into	a	form	and	they	would	login	to	your	data	(e.g.	your	Gmail	account)	as	you.	This	is	often	called	the	password	anti-pattern.	To	create	a	better	system	for	the	web,	federated	identity	was	created	for	single	sign-on	(SSO).	In	this	scenario,	an	end	user	talks	to	their	identity
provider,	and	the	identity	provider	generates	a	cryptographically	signed	token	which	it	hands	off	to	the	application	to	authenticate	the	user.	The	application	trusts	the	identity	provider.	As	long	as	that	trust	relationship	works	with	the	signed	assertion,	you’re	good	to	go.	The	diagram	below	shows	how	this	works.	Federated	identity	was	made	famous
by	SAML	2.0,	an	OASIS	Standard	released	on	March	15,	2005.	It’s	a	large	spec	but	the	main	two	components	are	its	authentication	request	protocol	(aka	Web	SSO)	and	the	way	it	packages	identity	attributes	and	signs	them,	called	SAML	assertions.	Okta	does	this	with	its	SSO	chiclets.	We	send	a	message,	we	sign	the	assertion,	inside	the	assertion	it
says	who	the	user	is,	and	that	it	came	from	Okta.	Slap	a	digital	signature	on	it	and	you’re	good	to	go.	SAML	SAML	is	basically	a	session	cookie	in	your	browser	that	gives	you	access	to	webapps.	It’s	limited	in	the	kinds	of	device	profiles	and	scenarios	you	might	want	to	do	outside	of	a	web	browser.	When	SAML	2.0	was	launched	in	2005,	it	made	sense.
However,	a	lot	has	changed	since	then.	Now	we	have	modern	web	and	native	application	development	platforms.	There	are	Single	Page	Applications	(SPAs)	like	Gmail/Google	Inbox,	Facebook,	and	Twitter.	They	have	different	behaviors	than	your	traditional	web	application,	because	they	make	AJAX	(background	HTTP	calls)	to	APIs.	Mobile	phones
make	API	calls	too,	as	do	TVs,	gaming	consoles,	and	IoT	devices.	SAML	SSO	isn’t	particularly	good	at	any	of	this.	OAuth	and	APIs	A	lot	has	changed	with	the	way	we	build	APIs	too.	In	2005,	people	were	invested	in	WS-*	for	building	web	services.	Now,	most	developers	have	moved	to	REST	and	stateless	APIs.	REST	is,	in	a	nutshell,	HTTP	commands
pushing	JSON	packets	over	the	network.	Developers	build	a	lot	of	APIs.	The	API	Economy	is	a	common	buzzword	you	might	hear	in	boardrooms	today.	Companies	need	to	protect	their	REST	APIs	in	a	way	that	allows	many	devices	to	access	them.	In	the	old	days,	you’d	enter	your	username/password	directory	and	the	app	would	login	directly	as	you.
This	gave	rise	to	the	delegated	authorization	problem.	“How	can	I	allow	an	app	to	access	my	data	without	necessarily	giving	it	my	password?”	If	you’ve	ever	seen	one	of	the	dialogs	below,	that’s	what	we’re	talking	about.	This	is	an	application	asking	if	it	can	access	data	on	your	behalf.	This	is	OAuth.	OAuth	is	a	delegated	authorization	framework	for
REST/APIs.	It	enables	apps	to	obtain	limited	access	(scopes)	to	a	user’s	data	without	giving	away	a	user’s	password.	It	decouples	authentication	from	authorization	and	supports	multiple	use	cases	addressing	different	device	capabilities.	It	supports	server-to-server	apps,	browser-based	apps,	mobile/native	apps,	and	consoles/TVs.	You	can	think	of	this
like	hotel	key	cards,	but	for	apps.	If	you	have	a	hotel	key	card,	you	can	get	access	to	your	room.	How	do	you	get	a	hotel	key	card?	You	have	to	do	an	authentication	process	at	the	front	desk	to	get	it.	After	authenticating	and	obtaining	the	key	card,	you	can	access	resources	across	the	hotel.	To	break	it	down	simply,	OAuth	is	where:	App	requests
authorization	from	User	User	authorizes	App	and	delivers	proof	App	presents	proof	of	authorization	to	server	to	get	a	Token	Token	is	restricted	to	only	access	what	the	User	authorized	for	the	specific	App	OAuth	Central	Components	OAuth	is	built	on	the	following	central	components:	Scopes	and	Consent	Actors	Clients	Tokens	Authorization	Server
Flows	OAuth	Scopes	Scopes	are	what	you	see	on	the	authorization	screens	when	an	app	requests	permissions.	They’re	bundles	of	permissions	asked	for	by	the	client	when	requesting	a	token.	These	are	coded	by	the	application	developer	when	writing	the	application.	Scopes	decouple	authorization	policy	decisions	from	enforcement.	This	is	the	first
key	aspect	of	OAuth.	The	permissions	are	front	and	center.	They’re	not	hidden	behind	the	app	layer	that	you	have	to	reverse	engineer.	They’re	often	listed	in	the	API	docs:	here	are	the	scopes	that	this	app	requires.	You	have	to	capture	this	consent.	This	is	called	trusting	on	first	use.	It’s	a	pretty	significant	user	experience	change	on	the	web.	Most
people	before	OAuth	were	just	used	to	name	and	password	dialog	boxes.	Now	you	have	this	new	screen	that	comes	up	and	you	have	to	train	users	to	use.	Retraining	the	internet	population	is	difficult.	There	are	all	kinds	of	users	from	the	tech-savvy	young	folk	to	grandparents	that	aren’t	familiar	with	this	flow.	It’s	a	new	concept	on	the	web	that’s	now
front	and	center.	Now	you	have	to	authorize	and	bring	consent.	The	consent	can	vary	based	on	the	application.	It	can	be	a	time-sensitive	range	(day,	weeks,	months),	but	not	all	platforms	allow	you	to	choose	the	duration.	One	thing	to	watch	for	when	you	consent	is	that	the	app	can	do	stuff	on	your	behalf	-	e.g.	LinkedIn	spamming	everyone	in	your
network.	OAuth	is	an	internet-scale	solution	because	it’s	per	application.	You	often	have	the	ability	to	log	in	to	a	dashboard	to	see	what	applications	you’ve	given	access	to	and	to	revoke	consent.	OAuth	Actors	The	actors	in	OAuth	flows	are	as	follows:	Resource	Owner:	owns	the	data	in	the	resource	server.	For	example,	I’m	the	Resource	Owner	of	my
Facebook	profile.	Resource	Server:	The	API	which	stores	data	the	application	wants	to	access	Client:	the	application	that	wants	to	access	your	data	Authorization	Server:	The	main	engine	of	OAuth	The	resource	owner	is	a	role	that	can	change	with	different	credentials.	It	can	be	an	end	user,	but	it	can	also	be	a	company.	Clients	can	be	public	and
confidential.	There	is	a	significant	distinction	between	the	two	in	OAuth	nomenclature.	Confidential	clients	can	be	trusted	to	store	a	secret.	They’re	not	running	on	a	desktop	or	distributed	through	an	app	store.	People	can’t	reverse	engineer	them	and	get	the	secret	key.	They’re	running	in	a	protected	area	where	end	users	can’t	access	them.	Public
clients	are	browsers,	mobile	apps,	and	IoT	devices.	Client	registration	is	also	a	key	component	of	OAuth.	It’s	like	the	DMV	of	OAuth.	You	need	to	get	a	license	plate	for	your	application.	This	is	how	your	app’s	logo	shows	up	in	an	authorization	dialog.	OAuth	Tokens	Access	tokens	are	the	token	the	client	uses	to	access	the	Resource	Server	(API).	They’re
meant	to	be	short-lived.	Think	of	them	in	hours	and	minutes,	not	days	and	month.	You	don’t	need	a	confidential	client	to	get	an	access	token.	You	can	get	access	tokens	with	public	clients.	They’re	designed	to	optimize	for	internet	scale	problems.	Because	these	tokens	can	be	short	lived	and	scale	out,	they	can’t	be	revoked,	you	just	have	to	wait	for
them	to	time	out.	The	other	token	is	the	refresh	token.	This	is	much	longer-lived;	days,	months,	years.	This	can	be	used	to	get	new	tokens.	To	get	a	refresh	token,	applications	typically	require	confidential	clients	with	authentication.	Refresh	tokens	can	be	revoked.	When	revoking	an	application’s	access	in	a	dashboard,	you’re	killing	its	refresh	token.
This	gives	you	the	ability	to	force	the	clients	to	rotate	secrets.	What	you’re	doing	is	you’re	using	your	refresh	token	to	get	new	access	tokens	and	the	access	tokens	are	going	over	the	wire	to	hit	all	the	API	resources.	Each	time	you	refresh	your	access	token	you	get	a	new	cryptographically	signed	token.	Key	rotation	is	built	into	the	system.	The	OAuth
spec	doesn’t	define	what	a	token	is.	It	can	be	in	whatever	format	you	want.	Usually	though,	you	want	these	tokens	to	be	JSON	Web	Tokens	(a	standard).	In	a	nutshell,	a	JWT	(pronounced	“jot”)	is	a	secure	and	trustworthy	standard	for	token	authentication.	JWTs	allow	you	to	digitally	sign	information	(referred	to	as	claims)	with	a	signature	and	can	be
verified	at	a	later	time	with	a	secret	signing	key.	To	learn	more	about	JWTs,	see	A	Beginner’s	Guide	to	JWTs	in	Java.	Tokens	are	retrieved	from	endpoints	on	the	authorization	server.	The	two	main	endpoints	are	the	authorize	endpoint	and	the	token	endpoint.	They’re	separated	for	different	use	cases.	The	authorize	endpoint	is	where	you	go	to	get
consent	and	authorization	from	the	user.	This	returns	an	authorization	grant	that	says	the	user	has	consented	to	it.	Then	the	authorization	is	passed	to	the	token	endpoint.	The	token	endpoint	processes	the	grant	and	says	“great,	here’s	your	refresh	token	and	your	access	token”.	You	can	use	the	access	token	to	get	access	to	APIs.	Once	it	expires,	you’ll
have	to	go	back	to	the	token	endpoint	with	the	refresh	token	to	get	a	new	access	token.	The	downside	is	this	causes	a	lot	of	developer	friction.	One	of	the	biggest	pain	points	of	OAuth	for	developers	is	you	having	to	manage	the	refresh	tokens.	You	push	state	management	onto	each	client	developer.	You	get	the	benefits	of	key	rotation,	but	you’ve	just
created	a	lot	of	pain	for	developers.	That’s	why	developers	love	API	keys.	They	can	just	copy/paste	them,	slap	them	in	a	text	file,	and	be	done	with	them.	API	keys	are	very	convenient	for	the	developer,	but	very	bad	for	security.	There’s	a	pay	to	play	problem	here.	Getting	developers	to	do	OAuth	flows	increases	security,	but	there’s	more	friction.	There
are	opportunities	for	toolkits	and	platforms	to	simplify	things	and	help	with	token	management.	Luckily,	OAuth	is	pretty	mature	these	days,	and	chances	are	your	favorite	language	or	framework	has	tools	available	to	simplify	things.	We’ve	talked	a	bit	about	the	client	types,	the	token	types,	and	the	endpoints	of	the	authorization	server	and	how	we	can

pass	that	to	a	resource	server.	I	mentioned	two	different	flows:	getting	the	authorization	and	getting	the	tokens.	Those	don’t	have	to	happen	on	the	same	channel.	The	front	channel	is	what	goes	over	the	browser.	The	browser	redirected	the	user	to	the	authorization	server,	the	user	gave	consent.	This	happens	on	the	user’s	browser.	Once	the	user
takes	that	authorization	grant	and	hands	that	to	the	application,	the	client	application	no	longer	needs	to	use	the	browser	to	complete	the	OAuth	flow	to	get	the	tokens.	The	tokens	are	meant	to	be	consumed	by	the	client	application	so	it	can	access	resources	on	your	behalf.	We	call	that	the	back	channel.	The	back	channel	is	an	HTTP	call	directly	from
the	client	application	to	the	resource	server	to	exchange	the	authorization	grant	for	tokens.	These	channels	are	used	for	different	flows	depending	on	what	device	capabilities	you	have.	For	example,	a	Front	Channel	Flow	where	you	authorize	via	user	agent	might	look	as	follows:	Resource	Owner	starts	flow	to	delegate	access	to	protected	resource
Client	sends	authorization	request	with	desired	scopes	via	browser	redirect	to	the	Authorize	Endpoint	on	the	Authorization	Server	Authorization	Server	returns	a	consent	dialog	saying	“do	you	allow	this	application	to	have	access	to	these	scopes?”	Of	course,	you’ll	need	to	authenticate	to	the	application,	so	if	you’re	not	authenticated	to	your	Resource
Server,	it’ll	ask	you	to	login.	If	you	already	have	a	cached	session	cookie,	you’ll	just	see	the	consent	dialog	box.	View	the	consent	dialog,	and	agree.	The	authorization	grant	is	passed	back	to	the	application	via	browser	redirect.	This	all	happens	on	the	front	channel.	There’s	also	a	variance	in	this	flow	called	the	implicit	flow.	We’ll	get	to	that	in	a
minute.	This	is	what	it	looks	like	on	the	wire.	Request	GET	gmail.send	&redirect_uri=	&response_type=code&client_id=812741506391	&state=af0ifjsldkj	This	is	a	GET	request	with	a	bunch	of	query	params	(not	URL-encoded	for	example	purposes).	Scopes	are	from	Gmail's	API.	The	redirect_uri	is	the	URL	of	the	client	application	that	the
authorization	grant	should	be	returned	to.	This	should	match	the	value	from	the	client	registration	process	(at	the	DMV).	You	don't	want	the	authorization	being	bounced	back	to	a	foreign	application.	Response	type	varies	the	OAuth	flows.	Client	ID	is	also	from	the	registration	process.	State	is	a	security	flag,	similar	to	XRSF.	To	learn	more	about
XRSF,	see	DZone's	"Cross-Site	Request	Forgery	explained".	Response	HTTP/1.1	302	Found	Location:	code=MsCeLvIaQm6bTrgtp7&state=af0ifjsldkj	The	code	returned	is	the	authorization	grant	and	state	is	to	ensure	it's	not	forged	and	it's	from	the	same	request.	After	the	Front	Channel	is	done,	a	Back	Channel	Flow	happens,	exchanging	the
authorization	code	for	an	access	token.	The	Client	application	sends	an	access	token	request	to	the	token	endpoint	on	the	Authorization	Server	with	confidential	client	credentials	and	client	id.	This	process	exchanges	an	Authorization	Code	Grant	for	an	Access	Token	and	(optionally)	a	Refresh	Token.	Client	accesses	a	protected	resource	with	Access
Token.	Below	is	how	this	looks	in	raw	HTTP.	Request	POST	/oauth2/v3/token	HTTP/1.1	Host:	www.googleapis.com	Content-Type:	application/x-www-form-urlencoded	code=MsCeLvIaQm6bTrgtp7&client_id=812741506391&client_secret={client_secret}&redirect_uri=	grant_type=authorization_code	The	grant_type	is	the	extensibility	part	of	OAuth.
It's	an	authorization	code	from	a	precomputed	perspective.	It	opens	up	the	flexibility	to	have	different	ways	to	describe	these	grants.	This	is	the	most	common	type	of	OAuth	flow.	Response	{	"access_token":	"2YotnFZFEjr1zCsicMWpAA",	"token_type":	"Bearer",	"expires_in":	3600,	"refresh_token":	"tGzv3JOkF0XG5Qx2TlKWIA"	}	The	response	is	JSON.
You	can	be	reactive	or	proactive	in	using	tokens.	Proactive	is	to	have	a	timer	in	your	client.	Reactive	is	to	catch	an	error	and	attempt	to	get	a	new	token	then.	Once	you	have	an	access	token,	you	can	use	the	access	token	in	an	Authentication	header	(using	the	token_type	as	a	prefix)	to	make	protected	resource	requests.	curl	-H	"Authorization:	Bearer
2YotnFZFEjr1zCsicMWpAA"	\	So	now	you	have	a	front	channel,	a	back	channel,	different	endpoints,	and	different	clients.	You	have	to	mix	and	match	these	for	different	use	cases.	This	up-levels	the	complexity	of	OAuth	and	it	can	get	confusing.	OAuth	Flows	The	very	first	flow	is	what	we	call	the	Implicit	Flow.	The	reason	it’s	called	the	implicit	flow	is
because	all	the	communication	is	happening	through	the	browser.	There	is	no	backend	server	redeeming	the	authorization	grant	for	an	access	token.	An	SPA	is	a	good	example	of	this	flow’s	use	case.	This	flow	is	also	called	2	Legged	OAuth.	Implicit	flow	is	optimized	for	browser-only	public	clients.	An	access	token	is	returned	directly	from	the
authorization	request	(front	channel	only).	It	typically	does	not	support	refresh	tokens.	It	assumes	the	Resource	Owner	and	Public	Client	are	on	the	same	device.	Since	everything	happens	on	the	browser,	it’s	the	most	vulnerable	to	security	threats.	The	gold	standard	is	the	Authorization	Code	Flow,	aka	3	Legged,	that	uses	both	the	front	channel	and
the	back	channel.	This	is	what	we’ve	been	talking	about	the	most	in	this	article.	The	front	channel	flow	is	used	by	the	client	application	to	obtain	an	authorization	code	grant.	The	back	channel	is	used	by	the	client	application	to	exchange	the	authorization	code	grant	for	an	access	token	(and	optionally	a	refresh	token).	It	assumes	the	Resource	Owner
and	Client	Application	are	on	separate	devices.	It’s	the	most	secure	flow	because	you	can	authenticate	the	client	to	redeem	the	authorization	grant,	and	tokens	are	never	passed	through	a	user-agent.	There’s	not	just	Implicit	and	Authorization	Code	flows,	there	are	additional	flows	you	can	do	with	OAuth.	Again,	OAuth	is	more	of	a	framework.	For
server-to-server	scenarios,	you	might	want	to	use	a	Client	Credential	Flow.	In	this	scenario,	the	client	application	is	a	confidential	client	that’s	acting	on	its	own,	not	on	behalf	of	the	user.	It’s	more	of	a	service	account	type	of	scenario.	All	you	need	is	the	client’s	credentials	to	do	the	whole	flow.	It’s	a	back	channel	only	flow	to	obtain	an	access	token
using	the	client’s	credentials.	It	supports	shared	secrets	or	assertions	as	client	credentials	signed	with	either	symmetric	or	asymmetric	keys.	Symmetric-key	algorithms	are	cryptographic	algorithms	that	allow	you	to	decrypt	anything,	as	long	as	you	have	the	password.	This	is	often	found	when	securing	PDFs	or	.zip	files.	Public	key	cryptography,	or
asymmetric	cryptography,	is	any	cryptographic	system	that	uses	pairs	of	keys:	public	keys	and	private	keys.	Public	keys	can	be	read	by	anyone,	private	keys	are	sacred	to	the	owner.	This	allows	data	to	be	secure	without	the	need	to	share	a	password.	There’s	also	a	legacy	mode	called	Resource	Owner	Password	Flow.	This	is	very	similar	to	the	direct
authentication	with	username	and	password	scenario	and	is	not	recommended.	It’s	a	legacy	grant	type	for	native	username/password	apps	such	as	desktop	applications.	In	this	flow,	you	send	the	client	application	a	username	and	password	and	it	returns	an	access	token	from	the	Authorization	Server.	It	typically	does	not	support	refresh	tokens	and	it
assumes	the	Resource	Owner	and	Public	Client	are	on	the	same	device.	For	when	you	have	an	API	that	only	wants	to	speak	OAuth,	but	you	have	old-school	clients	to	deal	with.	A	more	recent	addition	to	OAuth	is	the	Assertion	Flow,	which	is	similar	to	the	client	credential	flow.	This	was	added	to	open	up	the	idea	of	federation.	This	flow	allows	an
Authorization	Server	to	trust	authorization	grants	from	third	parties	such	as	SAML	IdP.	The	Authorization	Server	trusts	the	Identity	Provider.	The	assertion	is	used	to	obtain	an	access	token	from	the	token	endpoint.	This	is	great	for	companies	that	have	invested	in	SAML	or	SAML-related	technologies	and	allow	them	to	integrate	with	OAuth.	Because
SAML	assertions	are	short-lived,	there	are	no	refresh	tokens	in	this	flow	and	you	have	to	keep	retrieving	access	tokens	every	time	the	assertion	expires.	Not	in	the	OAuth	spec,	is	a	Device	Flow.	There’s	no	web	browser,	just	a	controller	for	something	like	a	TV.	A	user	code	is	returned	from	an	authorization	request	that	must	be	redeemed	by	visiting	a
URL	on	a	device	with	a	browser	to	authorize.	A	back	channel	flow	is	used	by	the	client	application	to	poll	for	authorization	approval	for	an	access	token	and	optionally	a	refresh	token.	Also	popular	for	CLI	clients.	We’ve	covered	six	different	flows	using	the	different	actors	and	token	types.	They’re	necessary	because	of	the	capabilities	of	the	clients,
how	we	needed	to	get	consent	from	the	client,	who	is	making	consent,	and	that	adds	a	lot	of	complexity	to	OAuth.	When	people	ask	if	you	support	OAuth,	you	have	to	clarify	what	they’re	asking	for.	Are	they	asking	if	you	support	all	six	flows,	or	just	the	main	ones?	There’s	a	lot	of	granularity	available	between	all	the	different	flows.	Security	and	the
Enterprise	There’s	a	large	surface	area	with	OAuth.	With	Implicit	Flow,	there’s	lots	of	redirects	and	lots	of	room	for	errors.	There’s	been	a	lot	of	people	trying	to	exploit	OAuth	between	applications	and	it’s	easy	to	do	if	you	don’t	follow	recommended	Web	Security	101	guidelines.	For	example:	Always	use	CSRF	token	with	the	state	parameter	to	ensure
flow	integrity	Always	whitelist	redirect	URIs	to	ensure	proper	URI	validations	Bind	the	same	client	to	authorization	grants	and	token	requests	with	a	client	ID	For	confidential	clients,	make	sure	the	client	secrets	aren’t	leaked.	Don’t	put	a	client	secret	in	your	app	that’s	distributed	through	an	App	Store!	The	biggest	complaint	about	OAuth	in	general
comes	from	Security	people.	It’s	regarding	the	Bearer	tokens	and	that	they	can	be	passed	just	like	session	cookies.	You	can	pass	it	around	and	you’re	good	to	go,	it’s	not	cryptographically	bound	to	the	user.	Using	JWTs	helps	because	they	can’t	be	tampered	with.	However,	in	the	end,	a	JWT	is	just	a	string	of	characters	so	they	can	easily	be	copied	and
used	in	an	Authorization	header.	Enterprise	OAuth	2.0	Use	Cases	OAuth	decouples	your	authorization	policy	decisions	from	authentication.	It	enables	the	right	blend	of	fine	and	coarse	grained	authorization.	It	can	replace	traditional	Web	Access	Management	(WAM)	Policies.	It’s	also	great	for	restricting	and	revoking	permissions	when	building	apps
that	can	access	specific	APIs.	It	ensures	only	managed	and/or	compliant	devices	can	access	specific	APIs.	It	has	deep	integration	with	identity	deprovisioning	workflows	to	revoke	all	tokens	from	a	user	or	device.	Finally,	it	supports	federation	with	an	identity	provider.	OAuth	is	not	an	Authentication	Protocol	To	summarize	some	of	the	misconceptions
of	OAuth	2.0:	it’s	not	backwards	compatible	with	OAuth	1.0.	It	replaces	signatures	with	HTTPS	for	all	communication.	When	people	talk	about	OAuth	today,	they’re	talking	about	OAuth	2.0.	Because	OAuth	is	an	authorization	framework	and	not	a	protocol,	you	may	have	interoperability	issues.	There	are	lots	of	variances	in	how	teams	implement	OAuth
and	you	might	need	custom	code	to	integrate	with	vendors.	OAuth	2.0	is	not	an	authentication	protocol.	It	even	says	so	in	its	documentation.	We’ve	been	talking	about	delegated	authorization	this	whole	time.	It’s	not	about	authenticating	the	user,	and	this	is	key.	OAuth	2.0	alone	says	absolutely	nothing	about	the	user.	You	just	have	a	token	to	get
access	to	a	resource.	There’s	a	huge	number	of	additions	that’ve	happened	to	OAuth	in	the	last	several	years.	These	add	complexity	back	on	top	of	OAuth	to	complete	a	variety	of	enterprise	scenarios.	For	example,	JWTs	can	be	used	as	interoperable	tokens	that	can	be	signed	and	encrypted.	Pseudo-Authentication	with	OAuth	2.0	Login	with	OAuth	was
made	famous	by	Facebook	Connect	and	Twitter.	In	this	flow,	a	client	accesses	a	/me	endpoint	with	an	access	token.	All	it	says	is	that	the	client	has	access	to	the	resource	with	a	token.	People	invented	this	fake	endpoint	as	a	way	of	getting	back	a	user	profile	with	an	access	token.	It’s	a	non-standard	way	to	get	information	about	the	user.	There’s
nothing	in	the	standards	that	say	everyone	has	to	implement	this	endpoint.	Access	tokens	are	meant	to	be	opaque.	They’re	meant	for	the	API,	they’re	not	designed	to	contain	user	information.	What	you’re	really	trying	to	answer	with	authentication	is	who	the	user	is,	when	did	the	user	authenticate,	and	how	did	the	user	authenticate.	You	can	typically
answer	these	questions	with	SAML	assertions,	not	with	access	tokens	and	authorization	grants.	That’s	why	we	call	this	pseudo	authentication.	Enter	OpenID	Connect	To	solve	the	pseudo	authentication	problem,	the	best	parts	of	OAuth	2.0,	Facebook	Connect,	and	SAML	2.0	were	combined	to	create	OpenID	Connect.	OpenID	Connect	(OIDC)	extends
OAuth	2.0	with	a	new	signed	id_token	for	the	client	and	a	UserInfo	endpoint	to	fetch	user	attributes.	Unlike	SAML,	OIDC	provides	a	standard	set	of	scopes	and	claims	for	identities.	Examples	include:	profile,	email,	address,	and	phone.	OIDC	was	created	to	be	internet	scalable	by	making	things	completely	dynamic.	There’s	no	longer	downloading
metadata	and	federation	like	SAML	requires.	There’s	built-in	registration,	discovery,	and	metadata	for	dynamic	federations.	You	can	type	in	your	email	address,	then	it	dynamically	discovers	your	OIDC	provider,	dynamically	downloads	the	metadata,	dynamically	know	what	certs	it’s	going	to	use,	and	allows	BYOI	(Bring	Your	Own	Identity).	It	supports
high	assurance	levels	and	key	SAML	use	cases	for	enterprises.	OIDC	was	made	famous	by	Google	and	Microsoft,	both	big	early	adopters.	Okta	has	made	a	big	investment	in	OIDC	as	well.	All	that	changes	in	the	initial	request	is	it	contains	standard	scopes	(like	openid	and	email):	Request	GET	scope=openid	email&	redirect_uri=	response_type=code&
client_id=812741506391&	state=af0ifjsldkj	Response	HTTP/1.1	302	Found	Location:	code=MsCeLvIaQm6bTrgtp7&state=af0ifjsldkj	The	code	returned	is	the	authorization	grant	and	state	is	to	ensure	it's	not	forged	and	it's	from	the	same	request.	And	the	authorization	grant	for	tokens	response	contains	an	ID	token.	Request	POST	/oauth2/v3/token
HTTP/1.1	Host:	www.googleapis.com	Content-Type:	application/x-www-form-urlencoded	code=MsCeLvIaQm6bTrgtp7&client_id=812741506391&	client_secret={client_secret}&	redirect_uri=	grant_type=authorization_code	Response	{	"access_token":	"2YotnFZFEjr1zCsicMWpAA",	"token_type":	"Bearer",	"expires_in":	3600,	"refresh_token":
"tGzv3JOkF0XG5Qx2TlKWIA",	"id_token":	"eyJhbGciOiJSUzI1NiIsImtpZCI6IjFlOWdkazcifQ..."	}	You	can	see	this	is	layered	nicely	on	top	of	OAuth	to	give	back	an	ID	token	as	a	structured	token.	An	ID	token	is	a	JSON	Web	Token	(JWT).	A	JWT	(aka	“jot”)	is	much	smaller	than	a	giant	XML-based	SAML	assertion	and	can	be	efficiently	passed	around
between	different	devices.	A	JWT	has	three	parts:	a	header,	a	body,	and	a	signature.	The	header	says	what	algorithm	was	used	to	sign	it,	the	claims	are	in	the	body,	and	its	signed	in	the	signature.	An	Open	ID	Connect	flow	involves	the	following	steps:	Discover	OIDC	metadata	Perform	OAuth	flow	to	obtain	id	token	and	access	token	Get	JWT	signature
keys	and	optionally	dynamically	register	the	Client	application	Validate	JWT	ID	token	locally	based	on	built-in	dates	and	signature	Get	additional	user	attributes	as	needed	with	access	token	OAuth	+	Okta	Okta	is	best	known	for	its	single-sign	on	services	that	allow	you	to	seamlessly	authenticate	to	the	applications	you	use	on	a	daily	basis.	But	did	you
know	Okta	also	has	an	awesome	developer	platform?	Secure	single	sign-on	often	uses	SAML	as	the	protocol	of	choice,	but	Okta	also	provides	several	other	options,	including	a	Sign-in	Widget,	Auth	SDK	(a	JavaScript-based	library),	Social	Login,	and	an	Authentication	API	for	any	client.	If	you’re	interested	in	learning	about	Okta	straight	from	the
source,	you	should	attend	Oktane17	in	late	August.	There’s	a	track	dedicated	to	app	development.	See	Okta’s	OIDC/OAuth	2.0	API	for	specific	information	on	how	we	support	OAuth.	SAML	is	implemented	by	Okta	with	its	SSO	chiclets.	If	you’re	an	Okta	customer,	like	me,	you	likely	interact	with	most	apps	using	something	like	.	When	you	click	on	a
chiclet,	we	send	a	message,	we	sign	the	assertion,	inside	the	assertion	it	says	who	the	user	is,	and	that	it	came	from	Okta.	Slap	on	a	digital	signature	on	it	and	you’re	good	to	go.	If	you’d	rather	watch	a	video	to	learn	about	OAuth,	please	see	the	presentation	below	from	Nate	Barbettini,	Product	Manager	at	Okta.	OAuth	2.0	is	an	authorization
framework	for	delegated	access	to	APIs.	It	involves	clients	that	request	scopes	that	Resource	Owners	authorize/give	consent	to.	Authorization	grants	are	exchanged	for	access	tokens	and	refresh	tokens	(depending	on	flow).	There	are	multiple	flows	to	address	varying	client	and	authorization	scenarios.	JWTs	can	be	used	for	structured	tokens	between
Authorization	Servers	and	Resource	Servers.	OAuth	has	a	very	large	security	surface	area.	Make	sure	to	use	a	secure	toolkit	and	validate	all	inputs!	OAuth	is	not	an	authentication	protocol.	OpenID	Connect	extends	OAuth	2.0	for	authentication	scenarios	and	is	often	called	“SAML	with	curly-braces”.	If	you’re	looking	to	dive	even	deeper	into	OAuth
2.0,	I	recommend	you	check	out	OAuth.com,	take	Okta’s	Auth	SDK	for	a	spin,	and	try	out	the	OAuth	flows	for	yourself.	If	you’d	like	to	learn	more	about	OAuth	and	OIDC,	we	suggest	the	following	posts:	If	you’re	passionate	about	OAuth	2.0	and	OIDC	like	we	are,	give	us	a	follow	on	Twitter	or	check	out	our	new	security	site	where	we’re	publishing	in-
depth	articles	on	security	topics.	Page	6	Every	good	dev	knows	that	time	spent	setting	up	the	perfect	environment	and	searching	out	the	latest	tools	is	time	well	spent.	Little	things	make	a	huge	difference	—	upgrade	your	IDE	plugins,	automate	a	task	or	two,	or	look	for	new	tools	and	libraries	that	can	increase	your	efficiency.	We’ve	taken	a	crack	at	an
updated	list	of	our	favorite	.NET	developer	tools,	that	can	simplify	your	life	and	amplify	your	work.	1.	JSON.NET	Chances	are	that	for	any	given	project	these	days,	you’ll	be	consuming	a	RESTful	JSON	API,	producing	one,	or	both.	And	even	if	you’re	not,	you	may	still	be	using	JSON	to	serialize	data	or	configuration	on	disk.	Sure,	you	could	get	it	done
using	System.Runtime.Serialization.Json,	but	JSON.NET	is	faster	and	has	tons	of	nice	features	to	make	your	life	easier.	Built-in	LINQ-to-JSON	support,	plus	the	ability	to	query	JSON	using	XPath-like	syntax	has	earned	this	library	the	reputation	as	the	de	facto	JSON	implementation	for	.NET.	2.	.NET	API	Browser	(and	Reverse	Package	Search)	Here’s	a
two-for-one	for	our	second	tool	suggestion:	the	.NET	API	Browser	and	Reverse	Package	Search.	As	classes	get	moved	around	when	their	packages	are	refactored	and	reshuffled	between	versions,	these	two	services	are	invaluable	for	tracking	everything	down.	Microsoft’s	.NET	API	Browser	is	a	comprehensive	reference	for	all	classes	and	methods	in
the	.NET	API.	The	best	part	is	that	it	autocompletes	while	you	type,	making	it	easy	to	locate	APIs	even	when	you	can’t	remember	exactly	where	they	exist	in	the	package	hierarchy.	Similarly,	the	Reverse	Package	Search	lets	you	quickly	search	a	vast	collection	of	third	party	libraries,	tagged	with	their	respective	supported	versions	of	.NET	Framework
or	.NET	Core.	It’s	a	little	less	curated	than	Microsoft’s	official	API	browser,	but	the	breadth	makes	up	for	it.	3.	StyleCop.Analyzers	If	there’s	one	thing	that	can	really	get	a	team	of	developers	fussed	up,	it’s	adhering	to	a	consistent	code	formatting	style.	The	only	real	solution	is	to	adopt	a	formatting	tool	like	StyleCop,	and	then	share	the	configuration
throughout	the	team.	StyleCop	can	detect	and	fix	a	broad	range	of	style	offences,	and	can	even	be	set	up	in	some	IDEs	to	work	real-time	as	you	type.	StyleCop.Analyzers	is	the	latest	incarnation	of	this	project.	Okta’s	very	own	.NET	evangelist	Nate	is	a	dedicated	contributor.	4.	Visual	Studio	Code	Visual	Studio	Code	is	Microsoft’s	open	source	text
editor	and	IDE.	It’s	beautiful	and	featureful	and	a	joy	to	use.	Not	just	for	.NET,	it	works	well	with	lots	of	language	ecosystems	and	runs	on	Mac,	Linux,	and	Windows.	It’s	got	some	similarities	to	Atom,	but	comes	with	IntelliSense,	debugger,	git	integration,	and	can	be	extended	even	further	with	plugins.	5.	Posh-git	Been	working	for	days	on	a	major
feature	branch	when	a	critical	issue	pops	up	in	production?	No	worries:	just	commit	to	your	feature	branch,	switch	to	the	stable	branch	to	push	a	fix,	and	switch	back.	Git	(and	modern	version	control	in	general)	has	really	enabled	this	sort	of	multitasking	on	a	codebase—but	it	can	get	confusing	quickly.	Posh-git	(and	its	equivalent	for	Subversion,
Mercurial,	and	Perforce)	modifies	your	shell	prompt	to	include	the	current	branch	and	other	status	information.	It	also	provides	tab-completion	for	your	SCM	commands	and	branch	names,	which	results	in	a	very	nice	git	experience.	6.	ReSharper	ReSharper	is	the	premier	code	analysis	tool	for	Visual	Studio.	It	provides	analysis,	linting,	and	refactoring
assistance.	From	on-the-fly	“quick	fixes”	to	project-wide	symbol	renaming,	this	tool	is	like	having	your	own	co-pilot.	It	costs	a	few	hundred	bucks	per	year,	but	it	should	quickly	pay	for	itself	in	increased	productivity,	and	it	comes	with	a	30-day	trial	so	you	can	take	it	for	a	test	drive.	Combine	it	with	the	StyleCop	plugin	and	get	the	benefits	of	code
format	evaluation	as	you	type.	7.	xUnit.net	If	you’ve	invested	in	good	unit	test	coverage,	then	you’re	undoubtedly	pretty	committed	to	a	testing	framework	already.	But	if	you’re	starting	a	new	project,	or	just	haven’t	got	around	to	writing	any	tests	yet	(we	won’t	judge)	then	look	no	further	than	xUnit.net.	It	is	the	successor	to	NUnit,	and	builds	on	the
long	lineage	of	similarly-named	testing	frameworks	in	other	languages	such	as	JUnit,	CPPUnit,	PHPUnit,	and	dozens	more.	However,	xUnit	has	made	some	opinionated	deviations	to	promote	clearer	more	isolated	tests	that	are	easier	to	maintain,	and	a	focus	on	data-driven	testing	using	theories.	xUnit.net	makes	writing	unit	tests	more	approachable
by	providing	the	scaffolding	to	put	them	on.	It	supplies	the	infrastructure	for	basic	fixturing	and	test	running	(including	in	parallel),	and	combines	nicely	with	AutoFixture	and	Moq	for	writing	concise	and	effective	unit	tests.	Bonus	–	FluentAssertions	On	the	topic	of	writing	concise	and	effective	unit	tests,	Fluent	Assertions	is	a	library	that	enables
expressive	assertions.	When	a	test	fails,	it’s	important	to	be	able	to	know	why	without	reaching	for	the	debugger.	The	possibilities	for	tweaking	and	refining	your	development	workflow	go	on	and	on.	While	shiny	new	tools	have	the	potential	to	dramatically	increase	productivity,	it’s	easy	to	go	down	the	rabbit	hole	of	research	and	not	actually	get	any
work	done.	So	now	that	you’ve	got	some	new	tricks,	you	can	stop	reading	and	go	put	them	to	work.	Page	7	In	the	age	of	the	“personalized	web	experience”,	authentication	and	user	management	is	a	given,	and	it’s	easier	than	ever	to	tap	into	third-party	authentication	providers	like	Facebook,	Twitter,	and	Google.	And	it’s	not	just	the	wild,	wild	web
that	needs	it.	Businesses	need	ways	to	secure	their	APIs,	and	identify	users	logged	into	their	apps.	OpenID	Connect	is	a	protocol	for	authenticating	users.	It	is	a	specification	by	the	OpenID	Foundation	describing	the	best	way	for	the	authentication	“handshake”	to	happen.	It	lays	out	what	an	Identity	Provider	needs	to	provide	in	order	to	be	considered
“OpenID	Connect	Certified”	which	makes	it	easier	than	ever	to	consume	authentication	as	a	service.	Why	Not	Use	OAuth	2.0?	First,	OAuth	2.0	is	NOT	an	authentication	protocol.	I	know	what	you’re	thinking:	“What?!!?”	But	it’s	not.	It	is	an	delegated	authorization	framework,	which	many	modern	authentication	protocols	are	built	on.	Second,	while
OAuth	2.0	does	a	great	job	of	providing	the	necessary	information	for	consumers	to	make	authorization	decisions,	it	says	nothing	about	how	that	information	will	be	exchanged	securely.	This	has	led	to	every	authentication	provider	having	their	own	way	of	exchanging	the	OAuth	2.0	information,	which	has	led	to	a	few	well-publicized	hacks.	OpenID
Connect	fixes	these	problems	by	providing	an	authentication	protocol	that	describes	exactly	how	the	exchange	of	authorization	information	happens	between	a	subscriber	and	their	provider.	So	let’s	see	how	this	works.	Nothing	Up	My	Sleeve	You’ll	be	using	Visual	Studio	Code	and	the	command	line.	You	can	also	use	Visual	Studio,	but	Visual	Studio
Code	is	cross-platform	and	lightweight,	so	it	won’t	matter	what	operating	system	you	are	using.	First,	get	the	dotnet	command-line	program.	Once	you	have	the	dotnet-cli	installed,	run	the	dotnet	new	mvc	--auth	None	command.	This	will	create	a	new	MVC	application	without	the	built-in	authentication.	You’re	going	to	do	that	yourself.	In	just	a	few
seconds	you’ll	have	a	simple	ASP.NET	Core	app	ready	to	go.	You	may	need	to	run	a	dotnet	restore	command	to	install	the	dependencies	for	the	base	application.	Add	an	Identity	Provider	Now	you	need	an	Identity	Provider.	For	this	tutorial	you’ll	use	Okta.	Once	you’ve	created	an	account	and	logged	in,	click	Admin	on	the	top	menu.	Then	choose	the
Applications	menu	item	from	the	admin	dashboard.	From	the	Applications	page,	click	the	Add	Application	button.	On	the	Add	Application	page,	click	on	the	Create	New	Application	button.	When	the	New	Application	Integration	window	pops	up,	set	up	the	new	application.	We’ll	choose	Web	from	the	Platform	dropdown,	and	OpenID	Connect	from	the
Sign	On	Method.	Once	you’ve	created	the	application,	choose	it	from	the	list	of	applications.	In	the	General	Settings	tab,	click	the	Edit	button	and	make	sure	to	add	to	the	Redirect	URIs.	While	you	are	on	the	General	Settings	tab,	scroll	down	and	copy	your	Client	ID	and	Client	Secret	somewhere.	You’ll	use	this	later	when	configuring	the	middleware
in	your	application.	Finally,	you’ll	need	to	make	sure	that	you	can	use	the	API	by	adding	the	localhost	URI	to	your	CORS	settings.	First,	choose	the	Security	menu	item	from	the	dashboard	and	the	choose	API	from	the	drop	down	menu.	Then	select	the	Trusted	Origins	tab.	Click	on	Add	Origin	and	add	as	a	trusted	origin.	Make	sure	that	CORS	and
Redirect	are	selected.	Enter	“ASP.NET	web	app	(debug)”	as	the	redirect	name	(or	any	other	name	that	makes	sense	to	you).	Now	you’re	ready	to	set	up	authentication!	Add	Authentication	When	you	open	your	application	in	Visual	Studio	or	Visual	Studio	Code,	you’ll	notice	that	there’s	a	.csproj	file.	You’ll	need	to	make	some	quick	changes	to	that	to
get	some	dependencies	you’ll	need	to	make	this	work.	In	the	ItemGroup	section	of	the	csproj	document	add:	This	will	allow	you	to	use	JSON	Web	Tokens	for	authorization	information,	get	the	tokens	from	the	OpenID	Connect	provider	(Okta	in	this	case)	and	store	them	in	cookies	for	session	management.	You’ll	need	to	run	a	quick	dotnet	restore
command,	but	don’t	worry,	once	you	save	the	file,	VS	Code	will	give	you	an	option	to	return	to	the	command	line.	Now,	open	the	Startup.cs	file,	and	on	the	first	line	of	the	Configure	method	add:	using	Microsoft.IdentityModel.Protocols.OpenIdConnect;	using	System.IdentityModel.Tokens.Jwt;	using	Microsoft.IdentityModel.Tokens;	Then,	between	the
app.UseStaticFiles();	and	app.UseMvc(...);	add:	app.UseCookieAuthentication(new	CookieAuthenticationOptions(){	AuthenticationScheme	=	"Cookies",	AutomaticAuthenticate	=	true	});	This	tells	the	application	that	you	want	to	store	your	session	tokens	in	cookies.	Then,	you	just	need	to	add	the	authentication	instructions.
app.UseOpenIdConnectAuthentication(new	OpenIdConnectOptions()	{	AuthenticationScheme	=	"oidc",	SignInScheme	=	"Cookies",	Authority	=	"https://{yourOktaDomain}",	ResponseType	=	OpenIdConnectResponseType.Code,	ClientId	=	"{clientId}",	ClientSecret	=	"{clientSecret}",	GetClaimsFromUserInfoEndpoint	=	true,
TokenValidationParameters	=	new	TokenValidationParameters	{	ValidateIssuer	=	true	},	SaveTokens	=	true	});	This	is	the	important	part,	so	let’s	go	through	it	line	by	line:	The	AuthenticationScheme	gives	out	scheme	a	name,	and	will	be	used	to	build	the	default	callback	url	(~/signin-oidc).	The	SignInScheme	is	used	to	set	the	sign-in	middleware.
The	Authority	identifies	the	authorization	endpoint	for	your	Identity	Provider.	It’s	discoverable	as	part	of	the	OpenID	specification,	and	is	located	at:	https://{yourOktaDomain}/oauth2/default/.well-known/openid-configuration.	The	ResponseType	is	also	specified	in	that	document	under	“response_types_supported”.	This	tells	the	application	you	want	to
start	an	authorization	code	flow	from	from	the	provider.	The	ClientId,	and	ClientSecret	are	the	Client	ID	and	Client	Secret	you	got	from	the	General	Settings	tab.	For	production,	I	would	highly	suggest	storing	these	in	a	secure	way	and	referencing	them	here.	They’re	in	line	here	for	demonstration	purposes.	Setting	GetClaimsFromUserInfoEndpoint	=
true	tells	the	provider	that	if	you’re	successful	authenticating,	go	ahead	and	make	a	call	to	the	userinfo_endpoint	(specified	in	the	configuration	document	at	the	same	URL	you	got	the	authorization_endpoint	and	the	response_types_supported	from).	This	will	get	the	claims	that	we’re	going	to	display	from	Okta	once	the	authentication	has	completed.
The	TokenValidationParameters	tells	the	middleware	that	we	want	to	validate	that	the	issuer	is	who	we	expect	it	to	be	by	getting	the	signing	key	from	the	jwks_uri	endpoint	in	the	.well-known/openid_configuration	document.	Finally,	we	tell	the	application	to	save	the	token	once	it	comes	back	from	the	provider.	That’s	all	there	is	to	it,	but	how	do	you
know	it’s	working?	Well,	you	could	hook	up	a	login	form	but	there	is	an	easier	way!	Check	Your	Work	All	you	really	need	to	do	is	add	an	[Authorize]	attribute	to	a	controller	method.	That	will	simply	and	quickly	show	us	that	it’s	going	to	the	login	page	on	the	provider,	but	it	won’t	show	us	what	the	provider	is	sending	back.	Let’s	create	a	page	that	will
show	that	information	so	you	can	make	sure	you’re	getting	what	you	think	you	should	be	getting	from	the	provider.	First,	add	a	using	statement	to	the	HomeController.cs	for	the	Authorize	attribute.	using	Microsoft.AspNetCore.Authorization;	Then	add	a	“Secure”	method	to	the	HomeController.cs	controller.	[Authorize]	public	IActionResult	Secure()	{
return	View();	}	Then	create	a	view	to	return	in	~/Views/Home	called	Security.cshtml.	@{	ViewData["Title"]	=	"Security";	}	Secure	@foreach	(var	claim	in	User.Claims)	{	@claim.Type	@claim.Value	}	This	will	just	loop	through	the	claims	and	output	them.	When	you	navigate	to	you	should	be	redirected	to	a	login	page.	Once	you’re	logged	in	(with	a
user	that	is	assigned	to	your	app),	you	should	now	see	a	list	of	the	claims	on	the	secure	page.	If	you	do,	congratulations!	You	just	set	up	OpenID	Connect	for	authenticating	in	your	ASP.NET	Core	app!	If	you	have	any	questions,	comments,	or	suggestions,	feel	free	to	reach	out	to	me	via	email,	or	hit	me	up	in	the	comments	or	via	Twitter	@leebrandt.
Page	8	My	favorite	thing	about	Apache	Shiro	is	how	easy	it	makes	handling	authorization.	You	can	use	a	role-based	access	control	(RBAC)	model	of	assigning	roles	to	users	and	then	permissions	to	roles.	This	makes	dealing	with	the	inevitable	requirements	change	simple.	Your	code	does	not	change,	just	the	permissions	associated	with	the	roles.	In
this	post	I	want	to	demonstrate	just	how	simple	it	is,	using	a	Spring	Boot	application	and	walking	through	how	I’d	handle	the	following	scenario:	Your	boss	(The	Supreme	Commander)	shows	up	at	your	desk	and	tells	you	the	current	volunteer	(Stormtrooper)	registration	application	needs	have	different	access	roles	for	the	different	types	of	employees.
Officers	can	register	new	“volunteers”	Underlings	(you	and	I)	only	have	read	access	the	volunteers	Anyone	from	outside	the	organization	doesn’t	have	any	access	to	the	“volunteers”	It	should	go	without	saying	the	Supreme	Commander	has	access	to	everything	Start	with	a	REST	Application	To	get	started,	grab	this	Spring	Boot	example.	It’ll	get	you
started	with	a	set	of	REST	endpoints	which	expose	CRUD	operations	to	manage	a	list	of	Stormtroopers.	You’ll	be	adding	authentication	and	authorization	using	Apache	Shiro.	All	of	the	code	is	up	on	GitHub.	Using	the	Apache	Shiro	Spring	Boot	starter	is	all	you	need,	just	add	the	dependency	to	your	pom.	(where	${shiro.version}	is	at	least	1.4.0):
org.apache.shiro	shiro-spring-boot-web-starter	${shiro.version}	Jumping	into	the	code	we	will	start	with	our	StormtrooperController,	and	simply	add	annotations:	@RestController	@RequestMapping(path	=	"/troopers",	produces	=	MediaType.APPLICATION_JSON_UTF8_VALUE)	public	class	StormtrooperController	{	private	final	StormtrooperDao
trooperDao;	@Autowired	public	StormtrooperController(StormtrooperDao	trooperDao)	{	this.trooperDao	=	trooperDao;	}	@GetMapping()	@RequiresRoles(logical	=	Logical.OR,	value	=	{"admin",	"officer",	"underling"})	public	Collection	listTroopers()	{	return	trooperDao.listStormtroopers();	}	@GetMapping(path	=	"/{id}")	@RequiresRoles(logical	=
Logical.OR,	value	=	{"admin",	"officer",	"underling"})	public	Stormtrooper	getTrooper(@PathVariable("id")	String	id)	throws	NotFoundException	{	Stormtrooper	stormtrooper	=	trooperDao.getStormtrooper(id);	if	(stormtrooper	==	null)	{	throw	new	NotFoundException(id);	}	return	stormtrooper;	}	@PostMapping()	@RequiresRoles(logical	=
Logical.OR,	value	=	{"admin",	"officer"})	public	Stormtrooper	createTrooper(@RequestBody	Stormtrooper	trooper)	{	return	trooperDao.addStormtrooper(trooper);	}	@PostMapping(path	=	"/{id}")	@RequiresRoles("admin")	public	Stormtrooper	updateTrooper(@PathVariable("id")	String	id,	@RequestBody	Stormtrooper	updatedTrooper)	throws
NotFoundException	{	return	trooperDao.updateStormtrooper(id,	updatedTrooper);	}	@DeleteMapping(path	=	"/{id}")	@ResponseStatus(value	=	HttpStatus.NO_CONTENT)	@RequiresRoles("admin")	public	void	deleteTrooper(@PathVariable("id")	String	id)	{	trooperDao.deleteStormtrooper(id);	}	}	In	the	code	block	above	you’re	using	Shiro’s
@RequiresRoles	annotation	to	describe	your	use-case.	You’ll	notice	the	logical	OR	to	allow	any	of	these	roles	access.	This	is	great,	your	code	is	done,	it	was	pretty	easy	to	add,	just	a	single	line.	You	could	stop	here	but,	roles	are	not	that	flexible,	and	if	you	put	them	directly	in	your	code	you’re	now	tightly	coupled	to	those	names/IDs.	Stop	Using	Roles
Imagine	your	application	has	been	deployed	and	is	working	fine,	the	following	week	your	boss	stops	by	your	desk	and	tells	you	to	to	make	some	changes:	Officers	need	to	be	able	to	update	troopers	He	feels	that	the	term	‘admin’	is	fine	for	most	superiors,	but	is	not	suitable	to	the	Dark	Lord	Fine,	you	say,	easy	enough,	you	can	just	make	a	few	small
changes	to	the	method	signatures:	@GetMapping()	@RequiresRoles(logical	=	Logical.OR,	value	=	{"emperor",	"admin",	"emperor",	"officer",	"underling"})	public	Collection	listTroopers()	@GetMapping(path	=	"/{id}")	@RequiresRoles(logical	=	Logical.OR,	value	=	{"emperor",	"admin",	"officer",	"underling"})	public	Stormtrooper
getTrooper(@PathVariable("id")	String	id)	throws	NotFoundException	@PostMapping()	@RequiresRoles(logical	=	Logical.OR,	value	=	{"emperor",	"admin",	"officer"})	public	Stormtrooper	createTrooper(@RequestBody	Stormtrooper	trooper)	@PostMapping(path	=	"/{id}")	@RequiresRoles(logical	=	Logical.OR,	value	=	{"emperor",	"admin",
"officer"})	public	Stormtrooper	updateTrooper(@PathVariable("id")	String	id,	@RequestBody	Stormtrooper	updatedTrooper)	throws	NotFoundException	@DeleteMapping(path	=	"/{id}")	@ResponseStatus(value	=	HttpStatus.NO_CONTENT)	@RequiresRoles(logical	=	Logical.OR,	value	=	{"emperor",	"admin"})	public	void
deleteTrooper(@PathVariable("id")	String	id)	After	another	round	of	testing	the	deployment	and	you’re	back	in	action!	Wait,	take	a	step	back.	Roles	are	great	for	simple	use	cases	and	making	a	change	like	this	would	work	fine,	but	you	know	this	will	be	changed	again.	Instead	of	changing	your	code	every	time	the	requirements	change	slightly,	let’s
decouple	the	roles	and	what	they	represent	from	your	code.	Instead,	use	permissions.	Your	method	signatures	will	look	like	this:	@GetMapping()	@RequiresPermissions("troopers:read")	public	Collection	listTroopers()	@GetMapping(path	=	"/{id}")	@RequiresPermissions("troopers:read")	public	Stormtrooper	getTrooper(@PathVariable("id")	String	id)
throws	NotFoundException	@PostMapping()	@RequiresPermissions("troopers:create")	public	Stormtrooper	createTrooper(@RequestBody	Stormtrooper	trooper)	@PostMapping(path	=	"/{id}")	@RequiresPermissions("troopers:update")	public	Stormtrooper	updateTrooper(@PathVariable("id")	String	id,	@RequestBody	Stormtrooper	updatedTrooper)
throws	NotFoundException	@DeleteMapping(path	=	"/{id}")	@ResponseStatus(value	=	HttpStatus.NO_CONTENT)	@RequiresPermissions("troopers:delete")	public	void	deleteTrooper(@PathVariable("id")	String	id)	By	using	Shiro’s	@RequiresPermissions	annotation,	this	code	would	work	with	the	original	requirements	and	the	new	requirements
without	modification.	The	only	thing	that	changes	is	how	you	map	those	permissions	to	roles,	and	in	turn,	to	users.	This	could	be	done	externally	from	your	application	in	a	database,	or	for	this	example	a	simple	properties	file.	NOTE:	This	example	uses	static	usernames	and	passwords	all	stored	as	clear	text,	this	is	fine	for	a	blog	post,	but	seriously,
manage	your	passwords	correctly!	To	meet	the	original	requirements,	the	role-to-permission	mapping	would	look	like	this:	role.admin	=	troopers:*	role.officer	=	troopers:create,	troopers:read	role.underling	=	troopers:read	For	the	updated	requirements,	you	would	just	change	the	file	slightly	to	add	the	new	‘emperor’	role,	and	grant	officers	the
‘update’	permission:	role.emperor	=	*	role.admin	=	troopers:*	role.officer	=	troopers:create,	troopers:read,	troopers:update	role.underling	=	troopers:read	If	the	permission	syntax	looks	a	little	funny	to	you,	take	a	look	at	Apache	Shiro’s	Wildcard	Permission	documentation	for	an	in	depth	explanation.	Apache	Shiro	and	Spring	We’ve	already	covered
the	Maven	dependencies	and	the	actual	REST	controller,	but	our	application	will	also	need	a	Realm	and	error	handling.	If	you	take	a	look	at	the	SpringBootApp	class	you	will	notice	a	few	things	that	were	NOT	in	the	original	example.	@Bean	public	Realm	realm()	{	//	uses	'classpath:shiro-users.properties'	by	default	PropertiesRealm	realm	=	new
PropertiesRealm();	//	Caching	isn't	needed	in	this	example,	but	we	can	still	turn	it	on	realm.setCachingEnabled(true);	return	realm;	}	@Bean	public	ShiroFilterChainDefinition	shiroFilterChainDefinition()	{	DefaultShiroFilterChainDefinition	chainDefinition	=	new	DefaultShiroFilterChainDefinition();	//	use	permissive	to	NOT	require	authentication,	our
controller	Annotations	will	decide	that	chainDefinition.addPathDefinition("/**",	"authcBasic[permissive]");	return	chainDefinition;	}	@Bean	public	CacheManager	cacheManager()	{	//	Caching	isn't	needed	in	this	example,	but	we	will	use	the	MemoryConstrainedCacheManager	for	this	example.	return	new	MemoryConstrainedCacheManager();	}	First
you	have	defined	a	Shiro	Realm,	a	realm	is	simply	a	user-store	specific	DAO.	Shiro	supports	many	different	types	of	Realms	out	of	the	box	(Active	Directory,	LDAP,	Database,	file,	etc.).	Next	up	you	have	the	ShiroFilterChainDefinition	which	you’ve	configured	to	allow	BASIC	authentication	but	NOT	required	it	by	using	the	‘permissive’	option.	This	way
your	annotations	configure	everything.	Instead	of	using	annotations	(or	in	addition	to	using	them)	you	could	define	your	permission	to	URL	mappings	with	Ant-style	paths.	This	example	would	look	something	like:	chainDefinition.addPathDefinition("/troopers/**",	"authcBasic,	rest[troopers]");	This	would	map	any	resource	starting	with	the	path
/troopers	to	require	BASIC	authentication,	and	use	the	‘rest’	filter	which	based	on	the	HTTP	request	method,	appends	a	CRUD	action	to	the	permission	string.	For	example	an	HTTP	GET	would	map	to	‘read’	so	the	full	permission	string	for	a	‘GET’	request	would	be	troopers:read	(just	like	you	did	with	your	annotations).	Exception	Handling	The	last	bit
of	code	you	have	handles	exceptions.	@ExceptionHandler(UnauthenticatedException.class)	@ResponseStatus(HttpStatus.UNAUTHORIZED)	public	void	handleException(UnauthenticatedException	e)	{	log.debug("{}	was	thrown",	e.getClass(),	e);	}	@ExceptionHandler(AuthorizationException.class)	@ResponseStatus(HttpStatus.FORBIDDEN)	public
void	handleException(AuthorizationException	e)	{	log.debug("{}	was	thrown",	e.getClass(),	e);	}	@ExceptionHandler(NotFoundException.class)	@ResponseStatus(HttpStatus.NOT_FOUND)	public	@ResponseBody	ErrorMessage	handleException(NotFoundException	e)	{	String	id	=	e.getMessage();	return	new	ErrorMessage("Trooper	Not	Found:	"+	id
+",	why	aren't	you	at	your	post?	"+	id	+",	do	you	copy?");	}	The	first	two	handle	Shiro	exceptions	and	simply	set	the	status	to	401	or	403.	A	401	for	invalid	or	missing	user/passwords,	and	a	403	for	any	valid	logged	in	user	that	does	NOT	have	access	to	the	resource.	Lastly,	you’ll	want	to	handle	any	NotFoundException	with	a	404	and	return	a	JSON
serialized	ErrorMessage	object.	Fire	it	Up!	If	you	put	all	of	this	together,	or	you	just	grab	the	code	from	GitHub,	you	can	start	the	application	using	mvn	spring-boot:run.	Once	you	have	everything	running	you	can	start	making	requests!	$	curl	HTTP/1.1	401	Content-Length:	0	Date:	Thu,	26	Jan	2017	21:12:41	GMT	WWW-Authenticate:	BASIC
realm="application"	Don’t	forget,	you	need	to	authenticate!	$	curl	--user	emperor:secret	HTTP/1.1	200	Content-Type:	application/json;charset=UTF-8	Date:	Thu,	26	Jan	2017	21:14:17	GMT	Transfer-Encoding:	chunked	[{	"id":	"FN-0128",	"planetOfOrigin":	"Naboo",	"species":	"Twi'lek",	"type":	"Sand"	},	{	"id":	"FN-1383",	"planetOfOrigin":	"Hoth",
"species":	"Human",	"type":	"Basic"	},	{	"id":	"FN-1692",	"planetOfOrigin":	"Hoth",	"species":	"Nikto",	"type":	"Marine"	},	...	A	404	looks	would	look	like	this:	$	curl	--user	emperor:secret	HTTP/1.1	404	Content-Type:	application/json;charset=UTF-8	Date:	Thu,	26	Jan	2017	21:15:54	GMT	Transfer-Encoding:	chunked	{	"error":	"Trooper	Not	Found:	TK-
421,	why	aren't	you	at	your	post?	TK-421,	do	you	copy?"	}	Learn	More	About	Apache	Shiro	This	example	has	shown	how	easy	it	is	to	integrate	Apache	Shiro	into	a	Spring	Boot	application,	how	using	permissions	allow	for	greater	flexibility	over	roles,	and	all	it	takes	is	a	single	Annotation	in	your	controller.	At	Stormpath	we	were	happy	to	be	able	to
commit	our	support	to	Apache	Shiro,	and	we’ve	carried	that	commitment	forward	to	Okta.	Look	forward	to	more	Shiro	content	from	our	team,	including	tutorials	on	using	Shiro	with	Okta	and	OAuth	plus	how	to	add	an	AngularJS	frontend	to	this	volunteer	application.	Stay	tuned,	the	Empire	needs	YOU!	If	you	have	questions	on	this	example	you	can
send	them	to	Apache	Shiro’s	user	list,	me	on	Twitter,	or	just	leave	them	in	the	comments	section	below!	To	learn	more,	check	out	these	posts:	Page	9	Progressive	Web	Apps,	aka	PWAs,	are	the	best	way	for	developers	to	make	their	webapps	load	faster	and	more	performant.	In	a	nutshell,	PWAs	are	websites	that	use	recent	web	standards	to	allow	for
installation	on	a	user’s	computer	or	device,	and	deliver	an	app-like	experience	to	those	users.	Twitter	recently	launched	mobile.twitter.com	as	a	PWA	built	with	React	and	Node.js.	They’ve	had	a	good	experience	with	PWAs,	showing	that	the	technology	is	finally	ready	for	the	masses.	In	this	guide,	you’ll	learn	about	the	essential	ingredients	in	a	PWA,
how	to	install	one,	why	you	should	build	one,	and	how	they	stack	up	against	hybrid	and	native	applications.	A	Deeper	Dive	–	What	is	a	PWA?	A	PWA	is	a	web	application	that	can	be	“installed”	on	your	system.	It	works	offline	when	you	don’t	have	an	internet	connection,	leveraging	data	cached	during	your	last	interactions	with	the	app.	If	you’re	on	a
desktop,	using	Chrome,	and	have	the	appropriate	flags	turned	on,	you	will	be	prompted	to	install	the	app	when	you	visit	the	site.	For	example,	enable	the	following	flags	in	Chrome	by	copying	and	pasting	the	following	URLs	into	Chrome.	chrome://flags/#enable-add-to-shelf	chrome://flags/#bypass-app-banner-engagement-checks	Click	the	blue
“Relaunch	Now”	button	at	the	bottom	of	your	browser	after	enabling	these	flags.	Now	if	you	visit	a	site	like	,	you’ll	see	an	installation	prompt	at	the	top	of	the	page.	Click	the	“Add”	button	and	you’ll	see	a	dialog	to	name	the	app,	populated	with	information	from	the	app’s	manifest.	This	adds	the	application	to	a	“~/Applications/Chrome	Apps”	directory
on	a	Mac.	If	you	launch	the	apps,	they	will	run	in	Chrome	rather	than	having	their	own	icon.	On	an	Android	phone,	their	icon	and	launch	behavior	will	resemble	that	of	a	native	application.	You	can	use	Chrome’s	Developer	Tools	>	Network	tab	to	toggle	“Offline”	and	reload	the	application.	You’ll	notice	it	still	loads	the	data	rather	than	saying	it	can’t
reach	the	server.	Why	Should	You	Build	a	PWA?	You	should	make	your	webapp	into	a	PWA	because	it’ll	reduce	the	time	it	takes	for	your	app	to	load	and	it’ll	give	your	users	a	better	experience.	Having	it	load	over	HTTPS	is	a	good	security	practice	and	adding	icons	(using	a	web	app	manifest)	is	something	you’d	do	anyway.	Having	a	cache-first	service
worker	strategy	will	allow	your	app	to	work	offline	(if	the	user	has	already	loaded	data),	alleviating	one	of	the	biggest	issues	with	webapps.	There	are	a	number	of	other	performance	recommendations	you	can	implement	in	your	webapp.	While	the	following	list	is	not	required	for	PWAs,	many	PWAs	employ	these	elements:	Implement	the	PRPL	pattern:
Push	critical	resources	for	the	initial	URL	route.	Render	initial	route.	Pre-cache	remaining	routes.	Lazy-load	and	create	remaining	routes	on	demand.	Use	to	tell	your	browser	to	load	a	resource	you	know	you’ll	eventually	need.	This	is	a	W3C	Standard	specification.	Use	HTTP/2	and	server	push	to	“push”	assets	to	the	browser	without	the	user	having	to
ask	for	them.	Use	code-splitting	and	lazy-loading	for	granular	loading	of	application	pages/features.	Mariko	Kosaka	created	some	drawings	to	show	the	difference	between	HTTP/1	and	HTTP/2.	I	think	it	illustrates	the	performance	gains	provided	by	HTTP/2	nicely.	Note	that	HTTP/2	requires	HTTPS,	just	like	PWAs	do.	Dynamic	Caching	and	Your	PWA	If
you’re	going	to	build	a	PWA	and	leverage	service	workers,	you	should	become	familiar	with	Chrome	Developer	Tools’	Application	tab.	This	tab	provides	the	ability	to	manipulate	service	workers	so	they	update	on	reload.	If	you	don’t	check	this	box,	developing	a	PWA	will	be	a	frustrating	experience.	The	reason	is	because	everything	will	be	cached	in
your	browser	and	when	you	update	files	in	your	editor,	they	won’t	be	reloaded	in	your	browser.	For	a	great	resource	on	Chrome’s	Developer	Tools,	I	recommend	Umaar	Hunsa’s	Dev	Tips.	Developing	PWAs	can	be	painful	because	it	will	cause	your	application	to	do	aggressive	caching	in	your	browser.	Web	developers	have	been	fighting	for	ages	to	get
the	browser	to	not	cache	assets,	so	PWAs	kinda	go	against	the	grain	for	web	developers.	One	workaround	is	to	comment	out	your	service	worker	registration	until	you	package	for	production.	This	can	be	done	by	simply	commenting	out	registration	of	a	service	worker	in	your	index.html.	For	example:	If	your	app	is	so	dynamic	that	you	don’t	want
anything	cached,	a	PWA	might	not	be	right	for	you.	However,	you	should	still	look	into	serving	it	over	HTTPS	and	using	HTTP/2	for	better	security	and	faster	performance.	PWAs	and	Hybrid	Apps	vs.	Mobile	Apps	Adding	PWA	support	is	important	so	people	with	slow	connections	and	affordable	smart	phones	can	use	your	webapp	more	easily.	If	your
app	is	large	and	you	can’t	load	parts	of	it	lazily	(meaning	loading	it	on-demand	rather	than	at	the	beginning),	bundling	it	all	up	in	a	hybrid	app	with	Cordova	might	make	sense.	If	your	app	does	intense	tasks	or	is	highly	interactive	(like	a	game),	coding	it	with	native	SDKs	is	likely	a	good	option.	If	you’re	interested	in	learning	more	about	using	Cordova
with	Ionic	and	Spring	Boot,	you	can	check	out	my	recent	tutorial.	PWAs	are	useful	for	apps	like	Twitter	and	news	sites	because	they	have	a	lot	of	text	that	you’ll	read,	but	not	necessarily	interact	with.	Having	it	as	a	PWA	allows	you	to	open	the	app,	load	its	data,	then	read	its	contents	later	when	you’re	offline.	This	should	work	in	a	normal	web
application,	but	I’ve	noticed	that	some	browsers	will	try	to	reload	the	page	when	you	open	them,	resulting	in	a	dreaded	“server	not	found”	error.	However,	neither	of	these	techniques	will	help	your	users	with	slow	connections	and	less	powerful	smartphones.	Even	if	you	choose	to	create	a	native	app,	it’s	still	wise	to	create	a	lightweight	PWA	app	that
can	load	in	seconds	and	give	your	users	something	to	work	with.	PWAs	are	the	way	of	the	future,	and	the	now.	Most	browsers	support	it,	with	notably	absent	support	in	Safari.	It’s	funny	to	see	that	Apple	is	blocking	PWA	support	on	iOS	when	they	only	supported	web	apps	on	the	first	iPhone.	However,	they	do	list	service	workers	as	“under
consideration”	in	WebKit.	Meanwhile,	Google	is	championing	the	effort,	with	vast	amounts	of	documentation	on	PWAs,	dedicated	developer	advocates	for	PWAs,	and	many	conference	sessions	on	the	subject	at	Google	I/O	2017.	Sam	Delgado	believes	“If	it	weren’t	for	Apple,	hybrid	app	development	would	be	the	clear	winner	over	native”.	In	this	article,
he	laments	that	there’s	one	major	disadvantage	to	the	hybrid	approach	for	iOS:	you	still	have	to	go	through	Apple’s	complicated	setup	for	Xcode,	provisioning	profiles,	needing	a	Mac	to	compile,	using	TestFlight	for	betas,	and	the	app	review	process.	The	iOS	WebView	is	another	reason	the	experience	isn’t	great.	WKWebView	offers	a	better
experience,	but	requires	some	hacky	workarounds.	He	ends	the	article	noting	that	the	“Hybrid	vs	Native”	debate	will	likely	continue	until	Apple	provides	a	pleasant	development	experience	for	hybrid	applications.	Matt	Asay	thinks	that	Apple	has	many	reasons	to	say	no	to	PWAs,	but	they	won’t	allow	Android	to	offer	a	better	web	experience.	Jason
Grigsby	writes,	“Despite	the	fact	that	iOS	doesn’t	support	the	full	feature	set	of	Progressive	Web	Apps,	early	evidence	indicates	that	Progressive	Web	Apps	perform	better	on	iOS	than	the	sites	they	replace.”	Not	only	that,	but	PWAs	offer	a	lower	cost	mobile	presence.	Yes,	there	are	some	additional	cons	like	some	native	APIs	not	being	available	and
that	you	can’t	find	PWAs	in	the	App	Store	or	Google	Play.	The	native	API	issues	might	be	around	for	awhile,	but	the	ability	to	locate	an	app	by	URL	(versus	searching	a	store)	seems	easier	to	me.	Chrome	and	Android	have	deep	integration	for	PWAs.	According	to	the	Chromium	Blog:	When	installed,	PWAs	appear	in	the	app	drawer	section	of	the
launcher	and	in	Android	Settings,	and	can	receive	incoming	intents	from	other	apps.	Long	presses	on	their	notifications	will	also	reveal	the	normal	Android	notification	management	controls	rather	than	the	notification	management	controls	for	Chrome.	Developers	have	pondered	if	PWAs	should	be	findable	in	Google	Play.	So	far,	Google	has	not
released	any	plans	to	do	so.	Another	thing	to	consider	is	how	much	WebStorage	on	the	device	your	application	will	need.	Eiji	Kitamura	conducted	research	on	quotas	for	mobile	browsers	in	2014	and	found	that	most	browsers	support	up	to	10MB	of	LocalStorage.	More	storage	is	typically	available	in	Application	Cache,	IndexedDB,	and	WebSQL,	but
only	on	desktop	browsers.	For	example,	Firefox	on	Android	allows	the	Application	Cache	to	use	up	to	500MB	on	desktop,	but	only	5MB	on	mobile.	Users	can	change	this	quota	on	their	device,	but	the	application	developer	cannot	control	this	setting.	You	can	see	the	quotas	for	your	browser	by	visiting	Browser	Storage	Abuser.	So,	what	do	you	need	to
know	to	start	building?	PWA	Requirements:	HTTPS,	Service	Workers,	and	Web	App	Manifest	The	requirements	for	a	PWA	can	be	quickly	added	to	almost	any	web	application.	All	you	need	to	do	is	the	following:	Deploy	it	to	a	public	web	server	and	force	HTTPS.	Create	and	include	a	JavaScript	file	with	code	to	cache	network	requests.	Create	and
include	a	web	app	manifest.	To	see	how	to	add	these	features	to	an	Angular	application,	see	my	Build	Your	First	Progressive	Web	Application	with	Angular	and	Spring	Boot	blog	post	on	Okta’s	developer	blog.	This	article	shows	you	how	to	add	a	service	worker,	a	manifest	with	icons,	and	deploy	it	to	CloudFoundry	with	HTTPS.	Not	only	that,	but	it
scores	a	98/100	using	the	Lighthouse	Chrome	Extension.	Scott	Domes	has	a	similar	tutorial	that	will	walk	you	through	the	basics	of	building	a	PWA	in	React.	Angular	will	soon	have	built-in	service	worker	support.	Create	React	App	(a	popular	starter	tool	for	React)	now	has	PWAs	by	default	as	one	of	its	features.	PWA	Reference	Apps	and	Stats	HN
PWA	is	a	reference	for	how	to	build	efficient	PWAs	with	different	frameworks.	It’s	similar	to	TodoMVC,	but	for	progressive	web	apps.	For	each	framework,	it	includes	its	Lighthouse	score	and	time	to	interactive	over	a	slow	connection,	as	well	as	a	faster	3G	connection.	PWA	Stats	is	a	website	with	statistics	about	the	cost	savings	and	improved
performance	gained	by	implementing	progressive	web	apps.	Some	examples:	Google	found	that	Progressive	Web	App	install	banners	convert	5-6x	more	often	than	native	install	banners.	The	Forbes	Progressive	Web	App’s	homepage	completely	loads	in	just	0.8	seconds.	The	Weather	Channel	saw	a	80%	improvement	in	load	time	after	shipping
Progressive	Web	Apps	in	62	languages	to	178	countries.	CSS	Tricks	notes	that	two	other	PWA	galleries	exist:	pwa-directory.appspot.com	pwa.rocks	Framework	Support	in	React,	Angular,	and	Vue.js	Support	for	PWA	features	already	exist	in	some	of	the	more	popular	JavaScript	framework	application	generators.	However,	you	don’t	need	to	have
these	features	created	for	you,	you	can	also	add	them	to	an	existing	application.	HTTPS	has	gotten	much	easier	with	free	certificates	from	Let’s	Encrypt	and	AWS	Certificate	Manager.	Deploying	static	web	apps	that	access	dynamic	data	has	been	vastly	simplified	by	CDNs,	AWS,	CloudFoundry,	and	Heroku.	Heroku	also	has	support	for	automated
certificate	management	using	Let’s	Encrypt.	You	can	generate	a	manifest.json	file	and	icons	for	your	PWA	using	and	.	For	online/offline	data	syncing,	you	can	use	solutions	like	IndexedDB,	PouchDB,	or	roll	your	own	with	the	Background	Sync	API.	This	feature	is	available	in	Chrome	desktop	and	Android	since	version	49.	Angular	You	can	add	service
worker	support	and	app	shell	for	offline	Angular	2+	applications.	With	native	service	worker	support	headed	to	Angular	soon,	you	can	tell	the	Angular	team	is	taking	the	PWA	challenge	to	heart.	Maxim	Salnikov’s	Progressive	Web	Apps	using	the	Angular	Mobile	Toolkit	workshop	from	Angular	Summit	2017	shows	how	this	new	support	will	look	using
Angular	CLI.	You	will	need	to	run	a	command:	ng	set	apps.0.serviceWorker=true	If	you	don’t	have	@angular/service-worker	installed,	you	will	see	a	message:	Your	project	is	configured	with	serviceWorker	=	true,	but	@angular/service-worker	is	not	installed.	Run	`npm	install	--save-dev	@angular/service-worker`	and	try	again,	or	run	`ng	set
apps.0.serviceWorker=false`	in	your	.angular-cli.json.	Ionic	is	a	framework	that	leverages	Angular	to	create	native	apps	with	web	technologies.	It	leverages	Cordova	to	run	the	app	on	phones	but	also	has	built-in	service	worker	and	manifest	support	if	you	want	to	deploy	your	app	to	the	web.	See	my	tutorial	about	developing	mobile	applications	with
Ionic	and	Spring	Boot	to	learn	more.	Below	is	a	screenshot	of	the	completed	application	in	the	tutorial.	NativeScript	is	another	option	for	developing	mobile	apps	with	Angular.	The	big	difference	between	it	and	Ionic	is	that	it	uses	the	native	platform’s	rendering	engine	instead	of	WebViews.	NativeScript	does	not	support	building	PWAs.	React	When
you	create	a	React	application	using	Create	React	App	(version	1.0+),	a	manifest	is	generated,	and	an	offline-first	caching	strategy	service	worker.	If	you	already	have	a	React	application,	Create	React	App’s	1.0	release	notes	tell	you	how	to	turn	your	app	into	a	PWA.	Preact	is	an	alternative	implementation	of	React	that’s	built	for	speed.	It’s	a	much
smaller	library	(~3KB)	that	implements	the	same	ES6	API,	components,	and	Virtual	DOM	support	as	React.	Using	it	instead	of	React	means	your	application	will	have	less	JavaScript	to	download,	parse,	and	execute.	Vue.js	Vue.js	has	a	command	line	tool	called	Vue-CLI.	Addy	Osmani	recently	added	a	PWA	template,	so	you	can	generate	a	new	Vue.js
PWA	app	with	the	following	commands:	npm	install	-g	vue-cli	vue	init	pwa	my-pwa-project	If	you	already	have	a	Vue.js	application,	see	Charles	Bochet’s	article	on	creating	a	PWA	with	Vue.js.	Learn	More	I	love	apps	that	work	when	I’m	offline,	especially	when	flying	and	traveling.	Internet	connectivity	can	be	spotty	when	you’re	moving	and	apps	that
don’t	require	connectivity	are	great.	For	instance,	I	wrote	the	first	draft	of	this	article	on	my	phone	using	Google	Docs,	without	service.	Although	Google	Docs	isn’t	a	PWA,	it	demonstrates	the	allure	of	making	your	web	app	work	offline.	Native	apps	have	been	caching	data	and	providing	offline	access	for	years.	Now	that	web	apps	have	similar
features,	we	should	embrace	them	and	use	them!	It’s	a	great	time	to	be	a	web	developer;	we	can	make	the	web	better	together.	If	you’re	interested	in	staying	up	to	date	on	what’s	happening	in	the	PWA	world,	I	recommend	following	Alex	Russell	(@slightlylate),	Addy	Osmani	(@addyosmani),	and	Sean	Larkin	(@thelarkinn)	on	Twitter.	Or,	you	can
check	out	any	of	these	great	resources:	Example	Applications	Ready	to	get	your	feet	wet	building	an	app?	You	can	find	some	interesting	PWA	tutorials	here:	Page	10	In	the	beginning,	there	were	proprietary	approaches	to	working	with	external	identity	providers	for	authentication	and	authorization.	Then	came	SAML	(Security	Assertion	Markup
Language)	–	an	open	standard	using	XML	as	its	message	exchange	type.	Then,	there	was	OAuth	and	OAuth	2.0	–	also	open	as	well	as	being	a	modern,	RESTful	approach	to	authorization	using	JSON	as	its	medium.	And	now,	the	holy	grail	of	“secure	delegated	access”	OpenID	Connect	(henceforth	OIDC),	which	runs	on	top	of	OAuth	2.0.	But	wait.	What
was	wrong	with	OAuth	2.0?	To	understand	better,	let’s	first	dispense	with	the	term,	secure	delegated	access.	It’s	too	vague	and	has	led	to	confusion	between	authentication	(authn)	and	authorization	(authz).	Without	secure,	external	authentication	and	authorization,	you’d	have	to	trust	that	every	application,	and	every	developer	not	only	had	your	best
interests	and	privacy	in	mind,	but	also	knew	how	to	protect	your	identity	and	was	willing	to	keep	up	with	security	best	practices.	That’s	a	pretty	tall	order,	right?	With	OIDC,	you	can	use	a	trusted	external	provider	to	prove	to	a	given	application	that	you	are	who	you	say	you	are,	without	ever	having	to	grant	that	application	access	to	your	credentials.
OAuth	2.0	leaves	a	lot	of	details	up	to	implementers.	For	instance,	it	supports	scopes,	but	scope	names	are	not	specified.	It	supports	access	tokens,	but	the	format	of	those	tokens	are	not	specified.	With	OIDC,	a	number	of	specific	scope	names	are	defined	that	each	produce	different	results.	OIDC	has	both	access	tokens	and	ID	tokens.	An	ID	token
must	be	JSON	web	token	(JWT).	Since	the	specification	dictates	the	token	format,	it	makes	it	easier	to	work	with	tokens	across	implementations.	In	this	blog	series,	I	share	a	primer	on	OIDC.	In	the	first	post,	we’ll	review	some	key	concepts	around	OIDC	and	tokens,	explained	in	human	terms.	Then,	we’ll	look	at	OIDC	in	action	with	some	specific	code
examples	to	highlight	its	value	in	the	authentication	and	authorization	ecosystem.	Finally,	we’ll	dig	into	the	guts	of	the	different	token	types	and	how	to	control	what	goes	into	them.	You	can	see	the	various	concepts	and	OIDC	interactions	covered	at:	The	code	that	backs	this	is	at:	Key	Concepts:	Scopes,	Claims,	and	Response	Types	Before	we	dive	into
the	minutiae	of	OIDC,	let’s	take	a	step	back	and	talk	about	how	we	interact	with	it.	There	are	two	primary	actors	involved	in	all	OIDC	interactions:	the	OpenID	Provider	(OP)	and	the	Relying	Party	(RP).	The	OP	is	an	OAuth	2.0	server	that	is	capable	of	authenticating	the	end-user	and	providing	information	about	the	result	of	the	authentication	and	the
end-user	to	the	Relying	Party.	The	Relying	Party	is	an	OAuth	2.0	application	that	“relies”	on	the	OP	to	handle	authentication	requests.	Typically,	you	kick	off	an	OIDC	interaction	by	hitting	an	/authorization	endpoint	with	an	HTTP	GET.	A	number	of	query	parameters	indicate	what	you	can	expect	to	get	back	after	authenticating	and	what	you’ll	have
access	to	(authorization).	Often,	you’ll	need	to	hit	a	/token	endpoint	with	an	HTTP	POST	to	get	tokens	which	are	used	for	further	interactions.	OIDC	also	has	an	/introspect	endpoint	for	verifying	a	token,	a	/userinfo	endpoint	for	getting	identity	information	about	the	user.	All	of	the	above	endpoints	are	the	convention,	but	can	be	defined	by	the	OP	to	be
anything.	One	of	the	great	improvements	in	OIDC	is	a	metadata	mechanism	to	discover	endpoints	from	the	provider.	For	instance,	if	you	navigate	to:	you’ll	get	back	a	JSON	formatted	document	with	the	metadata	that	identifies	all	the	available	endpoints	from	the	OP	(Okta,	in	this	case).	What’s	a	Scope?	Scopes	are	space-separated	lists	of	identifiers
used	to	specify	what	access	privileges	are	being	requested.	Valid	scope	identifiers	are	specified	in	RFC	6749.	OIDC	has	a	number	of	built	in	scope	identifiers.	openid	is	a	required	scope.	All	others	–	including	custom	scopes	–	are	optional.	The	built-in	scopes	are:	scope	purpose	profile	requests	access	to	default	profile	claims	email	requests	access	to
email	and	email_verified	claims	address	requests	access	to	address	claim	phone	requests	access	to	phone_number	and	phone_number_verified	claims	The	default	profile	claims	are:	name	family_name	given_name	middle_name	nickname	preferred_username	profile	picture	website	gender	birthdate	zoneinfo	locale	updated_at	Notice	how	the	scopes	are
tied	to	claims.	You	may	be	asking,	what	the	heck	are	claims?	What’s	a	Claim?	Simply	put,	claims	are	name/value	pairs	that	contain	information	about	a	user,	as	well	meta-information	about	the	OIDC	service.	The	official	definition	from	the	spec	is	a	“piece	of	information	asserted	about	an	Entity.”	Here’s	typical	set	of	claims:	{	"family_name":
"Silverman",	"given_name":	"Micah",	"locale":	"en-US",	"name":	"Micah	Silverman",	"preferred_username":	"micah.silverman@okta.com",	"sub":	"00u9vme99nxudvxZA0h7",	"updated_at":	1490198843,	"zoneinfo":	"America/Los_Angeles"	}	A	number	of	the	profile	claims	are	included	above.	That’s	because	the	request	for	the	user’s	info	was	made	using
a	token	that	was	obtained	with	the	profile	scope.	In	other	words,	a	request	is	made	that	results	in	the	issuance	of	a	token.	That	token	contains	certain	information	based	on	the	scopes	specified	in	the	original	request.	What’s	a	Response	Type?	When	working	with	OIDC,	you’ll	hear	talk	of	various	“flows”.	These	flows	are	used	to	describe	different
common	authentication	and	authorization	scenarios.	Considerations	include	the	type	of	application	(like	web-based	or	native	mobile	app),	how	you	want	to	validate	tokens	(in	the	app	or	in	the	backend),	and	how	you	want	to	access	additional	identity	information	(make	another	API	call	or	have	it	encoded	right	into	a	token).	There	are	three	primary
flows:	Authorization	Code,	Implicit,	and	Hybrid.	These	flows	are	controlled	by	the	response_type	query	parameter	in	the	/authorization	request.	When	thinking	of	which	flow	to	use,	consider	front-channel	vs.	back-channel	requirements.	Front-channel	refers	to	a	user-agent	(such	as	a	SPA	or	mobile	app)	interacting	directly	with	the	OpenID	provider
(OP).	The	implicit	flow	is	a	good	choice	when	front-channel	communication	is	required.	Back-channel	refers	to	a	middle-tier	client	(such	as	Spring	Boot	or	Express)	interacting	with	the	OP.	The	authorization	code	flow	is	a	good	choice	when	back-channel	communication	is	required.	Authorization	Code	flow	uses	response_type=code.	After	successful
authentication,	the	response	will	contain	a	code	value.	This	code	can	later	be	exchanged	for	an	access_token	and	an	id_token	(Hang	in	for	now,	we’ll	talk	about	tokens	in	more	depth	later	on.)	This	flow	is	useful	where	you	have	“middleware”	as	part	of	the	architecture.	The	middleware	has	a	client	id	and	client	secret,	which	is	required	to	exchange	the
code	for	tokens	by	hitting	the	/token	endpoint.	These	tokens	can	then	be	returned	to	the	end-user	application,	such	as	a	browser,	without	the	browser	ever	having	to	know	the	client	secret.	This	flow	allows	for	long-lived	sessions	through	the	use	of	refresh	tokens.	The	only	purpose	of	refresh	tokens	is	to	obtain	new	access	tokens	to	extend	a	user
session.	Implicit	flow	uses	response_type=id_token	token	or	response_type=id_token.	After	successful	authentication,	the	response	will	contain	an	id_token	and	an	access_token	in	the	first	case	or	just	an	id_token	in	the	second	case.	This	flow	is	useful	when	you	have	an	app	speaking	directly	to	a	backend	to	obtain	tokens	with	no	middleware.	It	does
not	support	long-lived	sessions.	Hybrid	flow	combines	the	above	two	in	different	combinations	–	whatever	make	sense	for	the	use	case.	An	example	would	be	response_type=code	id_token.	This	approach	enables	a	scenario	whereby	you	can	have	a	long	lived	session	in	an	app	and	get	tokens	back	immediately	from	the	/authorization	endpoint.	All	About
Tokens	With	the	foundation	of	scopes,	claims,	and	response	types,	we	can	now	talk	about	tokens!	There	are	three	types	of	tokens	in	OIDC:	id_token,	access_token	and	refresh_token.	ID	Tokens	An	id_token	is	a	JWT,	per	the	OIDC	Specification.	This	means	that:	identity	information	about	the	user	is	encoded	right	into	the	token	and	the	token	can	be
definitively	verified	to	prove	that	it	hasn’t	been	tampered	with.	There’s	a	set	of	rules	in	the	specification	for	validating	an	id_token.	Among	the	claims	encoded	in	the	id_token	is	an	expiration	(exp),	which	must	be	honored	as	part	of	the	validation	process.	Additionally,	the	signature	section	of	JWT	is	used	in	concert	with	a	key	to	validate	that	the	entire
JWT	has	not	been	tampered	with	in	any	way.	A	Brief	History	of	JWTs	In	the	beginning	tokens	were	opaque	–	they	carried	no	intrinsic	information.	This	was	fine	as	the	server	knew	the	token	and	could	look	up	any	data	related	to	it,	such	as	identity	information.	When	the	OAuth	2.0	spec	was	released	in	2012,	it	defined	token	types	(such	as	access	and
refresh	tokens),	but	it	purposely	avoided	dictating	the	format	of	these	tokens.	In	2015,	the	JWT	spec	was	released.	It	proposed	the	creation	of	tokens	which	encoded	other	information.	This	token	could	be	used	as	an	opaque	identifier	and	could	also	be	inspected	for	additional	information	–	such	as	identity	attributes.	It	called	these	attributes	claims.
The	spec	also	includes	provisions	for	cryptographically	signed	JWTs	(called	JWSs)	and	encrypted	JWTs	(called	JWEs).	A	signed	JWT	is	particularly	useful	in	application	development	because	you	can	have	a	high	degree	of	confidence	that	the	information	encoded	into	the	JWT	has	not	been	tampered	with.	By	verifying	the	JWT	within	the	application,	you
can	avoid	another	round	trip	to	an	API	service.	It	also	allows	to	enforce	behavior,	like	expiration,	because	you	know	the	exp	claim	has	not	been	altered.	There’s	no	direct	relationship	between	JWT	and	OAuth	2.0.	However,	many	OAuth	2.0	implementers	saw	the	benefits	of	JWTs	and	began	using	them	as	either	(or	both)	access	and	refresh	tokens.	OIDC
formalizes	the	role	of	JWT	in	mandating	that	ID	Tokens	be	JWTs.	Many	OIDC	implementers	will	also	use	JWTs	for	access	and	refresh	tokens,	but	it	is	not	dictated	by	the	spec.	Access	Tokens	Access	tokens	are	used	as	bearer	tokens.	A	bearer	token	means	that	the	bearer	can	access	authorized	resources	without	further	identification.	Because	of	this,	it’s
important	that	bearer	tokens	are	protected.	If	I	can	somehow	get	ahold	of	and	“bear”	your	access	token,	I	can	masquerade	as	you.	These	tokens	usually	have	a	short	lifespan	(dictated	by	its	expiration)	for	improved	security.	That	is,	when	the	access	token	expires,	the	user	must	authenticate	again	to	get	a	new	access	token	limiting	the	exposure	of	the
fact	that	it’s	a	bearer	token.	Although	not	mandated	by	the	OIDC	spec,	Okta	uses	JWTs	for	access	tokens	as	(among	other	things)	the	expiration	is	built	right	into	the	token.	OIDC	specifies	a	/userinfo	endpoint	that	returns	identity	information	and	must	be	protected.	Presenting	the	access	token	makes	the	endpoint	accessible.	Here’s	an	example	using
HTTPie:	http	HTTP/1.1	400	Bad	Request	...	WWW-Authenticate:	Bearer	error="invalid_request",	error_description="The	access	token	is	missing."	...	Let’s	try	again	with	an	expired	access	token:	http	\	Authorization:"Bearer	eyJhbGciOiJSUzI1NiIsImtpZCI6Ik93bFNJS3p3Mmt1Wk8zSmpnMW5Dc2RNelJhOEV1elY5emgyREl6X3RVRUkifQ..."	HTTP/1.1
401	Unauthorized	...	WWW-Authenticate:	Bearer	error="invalid_token",	error_description="The	token	has	expired."	...	Finally,	let’s	try	with	a	valid	access	token:	http	\	Authorization:"Bearer	eyJhbGciOiJSUzI1NiIsImtpZCI6Ik93bFNJS3p3Mmt1Wk8zSmpnMW5Dc2RNelJhOEV1elY5emgyREl6X3RVRUkifQ..."	HTTP/1.1	200	OK	...	{	"family_name":
"Silverman",	"given_name":	"Micah",	"groups":	["ABC123",	"Everyone"],	"locale":	"en-US",	"name":	"Micah	Silverman",	"preferred_username":	"micah+okta@afitnerd.com",	"sub":	"...",	"updated_at":	1490198843,	"zoneinfo":	"America/Los_Angeles"	}	Refresh	Tokens	Refresh	tokens	are	used	to	obtain	new	access	tokens.	Typically,	refresh	tokens	will	be
long-lived	while	access	tokens	are	short-lived.	This	allows	for	long-lived	sessions	that	can	be	killed	if	necessary.	Here’s	a	typical	scenario:	User	logs	in	and	gets	back	an	access	token	and	a	refresh	token	The	application	detects	that	the	access	token	is	expired	The	application	uses	the	refresh	token	to	obtain	a	new	access	token	Repeat	2	and	3	until	the
refresh	token	expires	After	the	refresh	token	expires,	the	user	must	authenticate	again	You	may	be	asking:	Why	do	this	dance?	This	approach	strikes	a	balance	between	user	experience	and	security.	Imagine	if	the	user	is	compromised	in	some	way.	Or,	their	subscription	expires.	Or,	they	are	fired.	At	any	point,	the	refresh	token	can	be	revoked	by	an
admin.	Then,	step	three	above	will	fail	and	the	user	will	be	forced	to	(attempt	to)	establish	a	new	session	by	authenticating.	If	their	account	has	been	suspended,	they	will	not	be	able	to	authenticate.	Identifying	Token	Types	It	can	be	confusing	sometimes	to	distinguish	between	the	different	token	types.	Here’s	a	quick	reference:	ID	tokens	carry
identity	information	encoded	in	the	token	itself,	which	must	be	a	JWT	Access	tokens	are	used	to	gain	access	to	resources	by	using	them	as	bearer	tokens	Refresh	tokens	exist	solely	to	get	more	access	tokens	Continue	the	OpenID	Connect	Journey	In	this	post,	we	learned	some	basics	about	OpenID	Connect,	its	history,	and	a	bit	about	the	various	flow
types,	scopes,	and	tokens	involved.	In	the	next	installment,	we	see	OIDC	in	action!	If	you	want	to	jump	ahead,	check	out	the	example	at:	And,	the	source	code	is	at:	The	whole	series	is	live	now.	Part	2	is	here.	Part	3	is	here.	If	you’d	like	to	see	other	security-focused	articles	like	this,	you	might	want	to	check	out	our	new	security	site	where	we’re
publishing	in-depth	articles	for	infosec	people.	Page	11	In	the	first	installment	of	this	OpenID	Connect	(OIDC)	series,	we	looked	at	some	OIDC	basics,	its	history,	and	the	various	flow	types,	scopes,	and	tokens	involved.	In	this	post,	we’ll	dive	into	the	mechanics	of	OIDC	and	see	the	various	flows	in	action.	The	token(s)	you	get	back	from	an	OIDC	flow
and	the	contents	of	the	/userinfo	endpoint	are	a	function	of	the	flow	type	and	scopes	requested.	You	can	see	this	live	on	the	OIDC	flow	test	site.	Here,	you	can	set	different	toggles	for	scope	and	response_type,	which	determines	the	type	of	flow	for	your	app.	Your	use	case	will	determine	which	flow	to	use.	Are	you	building	a	SPA	or	mobile	app	that
needs	to	interact	directly	with	the	OpenID	Provider	(OP)?	Do	you	have	middleware,	such	as	Spring	Boot	or	Node.js	Express	that	will	interact	with	the	OP?	Below,	we	dig	into	some	of	the	available	flows	and	when	it’s	appropriate	to	use	them.	The	Authorization	Code	flow	is	covered	in	Section	3.1	of	the	OIDC	spec.	The	TL;DR	is:	a	code	is	returned	from
the	/authorization	endpoint	which	can	be	exchanged	for	ID	and	access	tokens	using	the	/token	endpoint.	This	is	a	suitable	approach	when	you	have	a	middleware	client	connected	to	an	OIDC	OP	and	don’t	(necessarily)	want	tokens	to	ever	come	back	to	an	end-user	application,	such	as	a	browser.	It	also	means	the	end-user	application	never	needs	to
know	a	secret	key.	Here’s	an	example	of	how	this	flow	gets	started	using	Okta:	Let’s	break	that	down:	Key	Value	Description	Organization	URL	Okta	Tenant	Authorization	URL	/oauth2/aus2yrcz7aMrmDAKZ1t7/v1/authorize	Default	authorization	endpoint	for	your	org	client_id	0oa2yrbf35Vcbom491t7	Client	ID	of	the	OIDC	Application	defined	in	Okta
response_type	code	The	response	type	indicating	code	flow	scope	openid	openid	scope	is	required	state	little-room-greasy-pie	Randon	value	is	returned	back	at	the	end	of	the	flow	nonce	b1e7b75d-6248-4fc7-bad0-ac5ae0f2e581	Random	value	to	encode	into	the	id_token	for	later	validation	redirect_uri	https%3A%2F%2Fokta-oidc-
fun.herokuapp.com%2Fflow_result	url-encoded	url	that	the	OP	redirects	to	Here	it	is	in	the	browser:	Notice	that	on	the	new	screen,	you	are	redirected	back	to	the	redirect_uri	originally	specified:	Behind	the	scenes,	a	session	is	established	with	a	fixed	username	and	password.	If	you	deploy	this	app	on	your	own	(which	you	can	easily	do	from	here),

when	you	click	the	link	you	would	be	redirected	to	login	and	then	redirected	back	to	this	same	page.	On	the	above	screenshot,	you	see	the	returned	code	and	original	state.	That	code	can	now	be	exchanged	for	an	id_token	and	an	access_token	by	the	middle	tier	-	a	Spring	Boot	application,	in	this	case.	This	middle	tier	will	validate	the	state	we	sent	in
the	authorize	request	earlier	and	make	a	/token	request	using	the	Client	Secret	to	mint	an	access_token	and	id_token	for	the	user.	Implicit	Flow	The	Implicit	flow	is	covered	in	Section	3.2	of	the	OIDC	spec.	Essentially,	access	and	ID	tokens	are	returned	directly	from	the	/authorization	endpoint.	The	/token	endpoint	is	not	used.	This	is	a	suitable
approach	when	working	with	a	client	(such	as	a	Single	Page	Application	or	mobile	application)	that	you	want	to	interact	with	the	OIDC	OP	directly.	Here’s	an	example	of	how	this	flow	gets	started	using	Okta:	It’s	almost	identical	to	the	authorization	code	flow,	except	that	the	response_type	is	either	id_token,	token	or	id_token+token.	Below,	we	cover
exactly	what’s	in	these	tokens	and	how	it’s	driven,	but	remember:	an	id_token	encodes	identity	information	and	an	access_token	(returned	if	token	is	specified)	is	a	bearer	token	used	to	access	resources.	Okta	also	uses	JWT	for	an	access_token,	which	enables	additional	information	to	be	encoded	into	it.	Here’s	this	flow	in	the	browser:	You	are
redirected	back	to	the	redirect_uri	originally	specified	(with	the	returned	tokens	and	original	state):	The	application	can	now	verify	the	id_token	locally.	Use	the	/introspect	endpoint	to	verify	the	access_token.	It	can	also	use	the	access_token	as	a	bearer	token	to	hit	protected	resources,	such	as	the	/userinfo	endpoint.	Hybrid	Flow	The	Hybrid	flow	is
covered	in	Section	3.3	of	the	OIDC	spec.	In	this	flow,	some	tokens	are	returned	from	the	authorization	endpoint	(/authorize)	and	others	are	returned	from	the	token	endpoint	(/token).	This	is	a	suitable	approach	when	you	want	your	end-user	application	to	have	immediate	access	to	short-lived	tokens	–	such	as	the	id_token	for	identity	information,	and
also	want	to	use	a	backend	service	to	exchange	the	authorization	code	for	longer-lived	tokens	using	refresh	tokens.	It’s	a	combination	of	the	authorization	code	and	implicit	code	flows.	You	can	spot	it	by	looking	at	the	response_type	it	must	contain	code	and	one	or	both	of	id_token	and	token:	Here	it	is	in	the	browser:	You	are	redirected	back	to	the
redirect_uri	originally	specified	(with	the	returned	code,	tokens	and	original	state):	In	the	next	installment,	we	dig	into	how	to	control	what’s	in	these	tokens,	but	here’s	a	little	taste	now:	These	tokens	were	produced	as	a	result	of	hybrid	flow	with	all	default	scopes	enabled.	Here’s	the	response	from	the	/userinfo	endpoint	using	the	access_token	as	a
bearer	token:	{	"sub":	"00u2yulup4eWbOttd1t7",	"name":	"Okta	OIDC	Fun",	"locale":	"en-US",	"email":	"okta_oidc_fun@okta.com",	"preferred_username":	"okta_oidc_fun@okta.com",	"given_name":	"Okta	OIDC",	"family_name":	"Fun",	"zoneinfo":	"America/Los_Angeles",	"updated_at":	1499922371,	"email_verified":	true	}	Other	OIDC	Flows	There	are
two	other	flows	not	covered	in	this	post:	Client	Credentials	Flow	and	Resource	Owner	Password	Credentials.	These	are	both	defined	in	the	OAuth	2.0	spec	and,	as	such,	are	supported	by	OIDC.	Here,	we’re	focusing	on	flows	that	require	an	external	authentication	provider,	such	as	Okta	or	Google,	and	not	the	alternative	methods	that	these	flows
support.	What	information	is	encoded	in	the	id_token,	the	access_token	and	what	information	is	returned	when	hitting	the	protected	/userinfo	endpoint	are	a	function	of	the	flow	type	and	the	scopes	requested.	In	the	next	post,	we	dig	deeper	into	this.	Token	Teardowns	In	this	installment,	we	looked	at	OIDC	in	action.	You	can	experiment	with	OIDC	at:
You	can	easily	create	your	own	instance	of	the	OIDC	tool	if	you	have	an	Okta	tenant.	Check	mine	out	at:	You	can	explore	the	code	or	just	click	the	friendly	purple	button	to	deploy	your	own	instance.	In	the	final	installment,	we	dig	into	the	various	types	of	tokens	and	how	to	validate	them.	The	whole	series	is	live	now.	Part	1	is	here.	Part	3	is	here.	If	you
enjoyed	this,	you	might	also	want	to	check	out	our	new	security	site	where	we’re	publishing	lots	of	in-depth	infosec	articles.	Page	12	In	the	previous	two	installments	of	this	OpenID	Connect	(OIDC)	series,	we	dug	deep	into	the	OIDC	flow	types	and	saw	OIDC	in	action	using	a	playground	found	at:	.	In	this	third	and	final	installment,	we’ll	look	at	what’s
encoded	into	the	various	types	of	tokens	and	how	to	control	what	gets	put	in	them.	JWTs,	have	the	benefit	of	being	able	to	carry	information	in	them.	With	this	information	available	to	your	app	you	can	easily	enforce	token	expiration	and	reduce	the	number	of	API	calls.	Additionally,	since	they’re	cryptographically	signed,	you	can	verify	that	they	have
not	been	tampered	with.	The	source	code	that	backs	the	site	can	be	found	at:	.	There	are	two	primary	sources	for	information	relating	to	identity	as	dictated	by	the	OIDC	spec.	One	source	is	the	information	encoded	into	the	id_token	JWT.	Another	is	the	response	from	the	/userinfo	endpoint,	accessible	using	an	access_token	as	a	bearer	token.	At	Okta,
we’ve	chosen	to	make	our	access	tokens	JWTs	as	well,	which	provides	a	third	source	of	information.	(You’ll	see	this	in	many	OIDC	implementations.)	There	are	a	lot	of	combinations	of	query	parameters	in	the	/authorization	request	that	determine	what	information	will	be	encoded	into	an	id_token.	The	two	query	parameters	that	impact	what	will
ultimately	be	found	in	returned	tokens	and	the	/userinfo	endpoint	are	response_type	and	scope.	OIDC	Response	Types	For	the	moment,	we’ll	set	aside	scope	and	focus	on	response_type.	In	the	following	examples,	we	use	only	the	scopes,	openid	(required)	and	email.	We’ll	also	work	with	the	implicit	flow,	since	that	gives	us	back	tokens	immediately.
Given	this	request:	Notice	that	response_type=token	will	yield	us	an	access_token.	A	particular	format	is	not	required	in	the	OIDC	spec	for	access	tokens,	but	at	Okta	we	use	JWTs.	Looking	inside	the	returned	token,	we	see:	{	"active":	true,	"scope":	"openid	email",	"username":	"okta_oidc_fun@okta.com",	"exp":	1501531801,	"iat":	1501528201,	"sub":
"okta_oidc_fun@okta.com",	"aud":	"test",	"iss":	"	,	"jti":	"AT.upPJqU-Ism6Fwt5Fpl8AhNAdoUeuMsEgJ_VxJ3WJ1hk",	"token_type":	"Bearer",	"client_id":	"0oa2yrbf35Vcbom491t7",	"uid":	"00u2yulup4eWbOttd1t7"	}	This	is	mainly	resource	information,	including	an	expiration	(exp)	and	a	user	id	(uid).	If	we	want	to	get	identity	information	for	the	user,	we
must	hit	the	/userinfo	endpoint	using	the	access_token	as	a	bearer	token.	Here’s	what	that	looks	like	using	HTTPie:	http	Authorization:"Bearer	eyJhbGciOiJSUzI1NiIsImtpZCI6Ik93bFNJS3p3Mmt1Wk8zSmpnMW5Dc2RNelJhOEV1elY5emgyREl6X3RVRUkifQ..."	HTTP/1.1	200	OK	...	{	"sub":	"00u2yulup4eWbOttd1t7",	"email":	"okta_oidc_fun@okta.com",
"email_verified":	true	}	We	get	back	the	sub,	email	and	email_verified	claims.	This	is	because	of	the	default	scope=openid+email	from	the	original	request.	We’ll	look	at	some	more	detailed	responses	in	the	scopes	section.	Let’s	try	another	request:	This	time,	I’m	asking	for	an	ID	token	by	using	response_type=id_token.	The	response	is	a	JWT	(as
required	by	the	OIDC	spec)	with	this	information	encoded	into	it:	{	"sub":	"00u2yulup4eWbOttd1t7",	"email":	"okta_oidc_fun@okta.com",	"ver":	1,	"iss":	"	,	"aud":	"0oa2yrbf35Vcbom491t7",	"iat":	1501528456,	"exp":	1501532056,	"jti":	"ID.4Mmzy2kj5_B8nGZ_PT4dt8-fzu1tA2W3C5dbEF-N6Us",	"amr":	["pwd"],	"idp":	"00o1zyyqo9bpRehCw1t7",
"nonce":	"c96fa468-ca1b-46f0-8974-546f23f9ee6f",	"email_verified":	true,	"auth_time":	1501528157	}	Notice	that	we	have	the	sub	and	emailclaims	encoded	directly	in	the	JWT.	In	this	type	of	implicit	flow,	we	have	no	bearer	token	to	use	against	the	/userinfo	endpoint,	so	the	identity	information	is	baked	right	into	the	JWT.	Finally,	let’s	look	at	the	last
type	of	implicit	flow:	Here,	we	are	requesting	both	an	id_token	and	an	access_token	in	the	response.	Our	access_token	has	the	same	claims	as	before.	The	id_token	has	the	following:	{	"sub":	"00u2yulup4eWbOttd1t7",	"email":	"okta_oidc_fun@okta.com",	"ver":	1,	"iss":	"	,	"aud":	"0oa2yrbf35Vcbom491t7",	"iat":	1501528536,	"exp":	1501532136,	"jti":
"ID.fyybPizTmYLoQR20vlR7mpo8WTxB7JwkxplMQom-Kf8",	"amr":	["pwd"],	"idp":	"00o1zyyqo9bpRehCw1t7",	"nonce":	"c96fa468-ca1b-46f0-8974-546f23f9ee6f",	"auth_time":	1501528157,	"at_hash":	"T7ij7o69gBtjo6bAJvaVBQ"	}	Notice	that	there’s	less	information	in	the	id_token	this	time	(in	this	case,	there’s	no	email_verified	claim).	Because	we
also	requested	the	access_token,	it’s	expected	that	we	will	get	the	rest	of	the	available	identity	information	(based	on	scope)	from	the	/userinfo	endpoint.	In	this	case,	it	yields	the	same	information	as	before	when	we	only	requested	the	access_token	OIDC	Scopes	Combining	all	the	available	scopes	with	all	the	possible	response	types	yields	a	large	set
of	information	to	present:	48	combinations,	to	be	exact.	First,	I’ll	enumerate	what	each	scope	yields	and	then	we’ll	look	at	a	few	real	world	examples	combining	request_type	and	scope.	The	first	thing	to	note	is	that	the	different	scopes	have	an	impact	on	the	information	encoded	in	an	id_token	and	returned	from	the	/userinfo	endpoint.	Here’s	a	table	of
scopes	and	resultant	claims.	More	information	can	be	found	in	Section	5.4	of	the	OIDC	Spec	scope	resultant	claims	openid	(required	for	all	OIDC	flows)	profile	name,	family_name,	given_name,	middle_name,	nickname,	preferred_username	profile	(cont’d)	profile,	picture,	website,	gender,	birthdate,	zoneinfo,	locale,	updated_at	email	email,
email_verified	address	address	phone	phone_number,	phone_number_verified	Let’s	try	each	of	our	implicit	flows	with	all	the	possible	(default)	scope	types.	The	only	difference	in	the	resultant	access_token	compared	to	before	is	that	all	the	scopes	are	encoded	into	the	scp	array	claim.	This	time,	when	I	use	the	access_token	to	hit	the	/userinfo
endpoint,	I	get	back	more	information:	http	Authorization:"Bearer	eyJhbGciOiJSUzI1NiIsImtpZCI6Ik93bFNJS3p3Mmt1Wk8zSmpnMW5Dc2RNelJhOEV1elY5emgyREl6X3RVRUkifQ..."	HTTP/1.1	200	OK	...	{	"sub":	"00u2yulup4eWbOttd1t7",	"name":	"Okta	OIDC	Fun",	"locale":	"en-US",	"email":	"okta_oidc_fun@okta.com",	"preferred_username":
"okta_oidc_fun@okta.com",	"given_name":	"Okta	OIDC",	"family_name":	"Fun",	"zoneinfo":	"America/Los_Angeles",	"updated_at":	1499922371,	"email_verified":	true	}	Note:	While	it’s	not	the	complete	list	of	claims	defined	from	profile	scope,	it’s	all	the	claims	for	which	my	user	in	Okta	has	a	value.	Let’s	try	just	the	id_token	implicit	flow	(still	with	all
the	default	scopes):	Here’s	what’s	encoded	into	the	id_token	I	get	back:	{	"sub":	"00u2yulup4eWbOttd1t7",	"name":	"Okta	OIDC	Fun",	"locale":	"en-US",	"email":	"okta_oidc_fun@okta.com",	"ver":	1,	"iss":	"	,	"aud":	"0oa2yrbf35Vcbom491t7",	"iat":	1501532222,	"exp":	1501535822,	"jti":	"ID.Zx8EclaZmhSckGHOCRzOci2OaduksmERymi9-ad7ML4",
"amr":	["pwd"],	"idp":	"00o1zyyqo9bpRehCw1t7",	"nonce":	"c96fa468-ca1b-46f0-8974-546f23f9ee6f",	"preferred_username":	"okta_oidc_fun@okta.com",	"given_name":	"Okta	OIDC",	"family_name":	"Fun",	"zoneinfo":	"America/Los_Angeles",	"updated_at":	1499922371,	"email_verified":	true,	"auth_time":	1501528157	}	All	the	(available)	identity
information	is	encoded	right	into	the	token,	since	I	don’t	have	a	bearer	token	to	hit	the	/userinfo	endpoint	with.	Finally,	let’s	try	the	last	variant	of	the	Implicit	Flow:	response_type=id_token+token:	In	this	case,	we	have	some	of	the	claims	encoded	into	the	id_token:	{	"sub":	"00u2yulup4eWbOttd1t7",	"name":	"Okta	OIDC	Fun",	"email":
"okta_oidc_fun@okta.com",	"ver":	1,	"iss":	"	,	"aud":	"0oa2yrbf35Vcbom491t7",	"iat":	1501532304,	"exp":	1501535904,	"jti":	"ID.1C2NQext2hM0iJy55cLc_Ryc45urVYC1wJ0S-KebkpI",	"amr":	["pwd"],	"idp":	"00o1zyyqo9bpRehCw1t7",	"nonce":	"c96fa468-ca1b-46f0-8974-546f23f9ee6f",	"preferred_username":	"okta_oidc_fun@okta.com",	"auth_time":
1501528157,	"at_hash":	"GB5O9CpSSOUSfVZ9CRekRg",	"c_hash":	"mRNStYQm-QU4rwcfv88VKA"	}	If	we	use	the	resultant	access_token	to	hit	the	/userinfo	endpoint,	in	this	case,	we	get	back:	http	Authorization:"Bearer	eyJhbGciOiJSUzI1NiIsImtpZCI6Ik93bFNJS3p3Mmt1Wk8zSmpnMW5Dc2RNelJhOEV1elY5emgyREl6X3RVRUkifQ..."	HTTP/1.1	200
OK	...	{	"sub":	"00u2yulup4eWbOttd1t7",	"name":	"Okta	OIDC	Fun",	"locale":	"en-US",	"email":	"okta_oidc_fun@okta.com",	"preferred_username":	"okta_oidc_fun@okta.com",	"given_name":	"Okta	OIDC",	"family_name":	"Fun",	"zoneinfo":	"America/Los_Angeles",	"updated_at":	1499922371,	"email_verified":	true	}	This	rounds	out	all	the	identity
information	that	was	requested	in	the	scopes.	Custom	Scopes	and	Claims	The	OIDC	spec	accommodate	custom	scopes	and	claims.	The	ability	to	include	custom	claims	in	a	token	(which	is	cryptographically	verifiable)	is	an	important	capability	for	identity	providers.	Okta’s	implementation	provides	support	for	this.	The	screenshot	below	shows	my
Authorization	Server’s	Claims	tab:	Clicking	the	“Add	Claim”	button	brings	up	a	dialog:	In	the	above	screenshot,	the	custom	claim	is	defined	using	Okta’s	Expression	Language.	Unique	to	Okta,	the	expression	language	is	a	flexible	way	to	describe	rules	for	building	a	property	to	include	(or	not)	in	custom	claims.	Using	the	implicit	flow	with
response_type=id_token	and	scope=openid+profile,	we	now	get	back	an	id_token	with	these	claims	encoded	in	it:	{	"sub":	"00u2yulup4eWbOttd1t7",	"ver":	1,	"iss":	"	,	"aud":	"0oa2yrbf35Vcbom491t7",	"iat":	1501533536,	"exp":	1501537136,	"jti":	"ID.TsKlBQfGmiJcl2X3EuhzyyLfmzqi0OCd66rJ3Onk7FI",	"amr":	["pwd"],	"idp":
"00o1zyyqo9bpRehCw1t7",	"nonce":	"c96fa468-ca1b-46f0-8974-546f23f9ee6f",	"auth_time":	1501528157,	"at_hash":	"hEjyn3mbKjuWanuSAF-z4Q",	"full_name":	"Okta	OIDC	Fun"	}	Notice	the	full_name	claim	present	in	the	id_token.	Verifying	Tokens	Access	tokens	can	be	verified	by	hitting	the	/introspect	endpoint.	For	an	active	token,	you	get	a
response	like	this:	http	--auth	:	-f	POST	\	\	token=eyJhbGciOiJSUzI1NiIsImtpZCI6Ik93bFNJS3p3Mmt1Wk8zSmpnMW5Dc2RNelJhOEV1elY5emgyREl6X3RVRUkifQ...	HTTP/1.1	200	OK	...	{	"active":	true,	"aud":	"	,	"client_id":	"xdgqP32nYN148gn3gJsW",	"exp":	1498517509,	"fullName":	"Micah	Silverman",	"iat":	1498513909,	"iss":	"	,	"jti":	"AT.JdXQPAuh-
JTqhspCL8nLe2WgbfjcK_-jmlp7zwaYttE",	"scope":	"openid	profile",	"sub":	"micah+okta@afitnerd.com",	"token_type":	"Bearer",	"uid":	"00u9vme99nxudvxZA0h7",	"username":	"micah+okta@afitnerd.com"	}	Since	it	requires	the	OIDC	client	ID	and	secret,	this	operation	would	typically	be	done	in	an	application	server	where	it’s	safe	to	have	those
credentials.	You	would	not	want	something	like	an	end-user	web	or	mobile	application	to	have	access	to	the	OIDC	client	secret.	If	the	token	parameter	is	invalid	or	expired,	the	/introspect	endpoint	returns	this:	http	--auth	:	-f	POST	\	\	token=bogus	HTTP/1.1	200	OK	...	{	"active":	false	}	ID	tokens	can	be	verified	using	the	JWK	endpoint.	JWK	is	a	JSON
data	structure	that	represents	a	crypto	key.	The	JWK	endpoint	is	exposed	from	the	OIDC	“well	known”	endpoint	used	for	API	discovery.	This	returns	a	lot	of	information.	Here’s	an	excerpt:	http	HTTP/1.1	200	OK	...	{	"authorization_endpoint":	"	,	...	"introspection_endpoint":	"	,	...	"issuer":	"	,	"jwks_uri":	"	,	...	"userinfo_endpoint":	"	}	Some	of	the
endpoints,	such	as	/userinfo	and	/authorize,	should	look	familiar	by	now.	The	one	we’re	interested	in	is	the	/keys	endpoint	shown	in	jwks_uri.	http	HTTP/1.1	200	OK	...	{	"keys":	[{	"alg":	"RS256",	"e":	"AQAB",	"kid":	"cbkhWG0YmFsGiNO1LEkWSEszDCTNfwvJPpXxuVf_kX0",	"kty":	"RSA",	"n":
"g2XQgdyc5P6F4K26ioKiUzrdgfy90eBgIbcrKkspKZmzRJ3CIssv69f1ClJvT784J-...",	"use":	"sig"	}]	}	Notice	the	kid	claim.	It	matches	the	kid	claim	in	the	header	from	our	id_token:	{	"typ":	"JWT",	"alg":	"RS256",	"kid":	"cbkhWG0YmFsGiNO1LEkWSEszDCTNfwvJPpXxuVf_kX0"	}	We	can	also	see	that	the	algorithm	used	is	RS256.	Using	the	public	key
found	in	the	n	claim	along	with	a	security	library,	we	can	confirm	that	the	ID	token	has	not	been	tampered	with.	All	of	this	can	be	done	safely	on	an	end-user	SPA,	mobile	app,	etc.	Here’s	a	Java	example	that	uses	the	claims	from	the	jwks_uri	above	to	verify	an	id_token:	java	-jar	target/jwk-token-verifier-0.0.1-SNAPSHOT-spring-boot.jar	\
eyJhbGciOiJSUzI1NiIsImtpZCI6Ik93bFNJS3p3Mmt1Wk8zSmpnMW5Dc2RNel...	\	g2XQgdyc5P6F4K26ioKiUzrdgfy90eBgIbcrKkspKZmzRJ3CIssv69f1ClJvT784J-...	\	AQAB	Verified	Access	Token	{	"header"	:	{	"alg"	:	"RS256",	"kid"	:	"cbkhWG0YmFsGiNO1LEkWSEszDCTNfwvJPpXxuVf_kX0"	},	"body"	:	{	"ver"	:	1,	"jti"	:
"AT.LT9cRL_Kzd3T8Izw_ONZxHJ5xGBPD0m13iiEIDK_Nbw",	"iss"	:	"	,	"aud"	:	"test",	"iat"	:	1501533536,	"exp"	:	1501537136,	"cid"	:	"0oa2yrbf35Vcbom491t7",	"uid"	:	"00u2yulup4eWbOttd1t7",	"scp"	:	["openid"],	"sub"	:	"okta_oidc_fun@okta.com"	},	"signature"	:	"ZV_9tYxt4v4bp9WEEDu038b7v_OHsbMZw13daR1s5_tI56oayBgJlnqf-..."	}	If	any	part	of
the	id_token	JWT	had	been	tampered	with,	you	would	see	this	instead:	io.jsonwebtoken.SignatureException:	JWT	signature	does	not	match	locally	computed	signature.	JWT	validity	cannot	be	asserted	and	should	not	be	trusted.	Verifying	JWT’s	using	the	/introspect	endpoint	and	using	JWKs	is	a	powerful	component	of	OIDC.	It	allows	for	a	high	degree
of	confidence	that	the	token	has	not	been	tampered	in	any	way.	And,	because	of	that,	information	contained	within	–	such	as	expiration	–	can	be	safely	enforced.	How	I	Learned	to	Love	OpenID	Connect	When	OIDC	was	first	released	and	early	implementers,	such	as	Google,	adopted	it,	I	thought:	“I	just	got	used	to	OAuth	2.0.	Why	do	I	have	to	learn	a
new	thing	that	rides	on	top	of	it?”	It	took	some	time,	but	here	is	what	I	consider	to	be	the	important	takeaways:	OIDC	formalizes	a	number	of	things	left	open	in	OAuth	2.0.	Things	like:	specific	token	formats	(id_token)	and	specific	scopes	and	claims.	There’s	explicit	support	for	Authentication	and	Authorization.	OAuth	2.0	was	always	presented	purely
as	an	authorization	framework,	but	people	would	get	confused	with	certain	flows	that	allowed	for	authentication.	There’s	a	clear	separation	between	identity	(id_token	and	/userinfo)	and	access	to	resources	(access_token).	The	different	flows	provide	clean	use	case	implementations	for	mobile	apps,	SPAs,	and	traditional	web	apps.	It’s	inherently
flexible.	It’s	easy	to	provide	custom	scopes	and	claims	and	to	dictate	what	information	should	be	encoded	into	tokens	beyond	the	default	specification.	All	the	code	used	in	this	series	can	be	found	on	github.	You	can	use	the	OIDC	sample	app	to	exercise	the	various	flows	and	scopes	discussed	throughout	these	posts.	It’s	at:	.	The	entire	final	OIDC	spec
can	be	found	here.	And	you	can	learn	more	about	OAuth	2.0	at	oauth.com.	The	whole	series	is	live	now.	Part	1	is	here.	Part	2	is	here.	If	you’re	looking	for	other	security-focused	articles,	you	may	want	to	check	out	our	new	security	site,	where	we’re	publishing	lots	of	other	in-depth	security	pieces.	Page	13	You’ve	built	a	microservices	architecture	with
Spring	Boot	and	Spring	Cloud.	You’re	happy	with	the	results,	and	you	like	how	it	adds	resiliency	to	your	application.	You’re	also	pleased	with	how	it	scales	and	how	different	teams	can	deploy	microservices	independently.	But	what	about	security?	Are	you	using	Spring	Security	to	lock	everything	down?	Are	your	microservices	locked	down	too,	or	are
they	just	behind	the	firewall?	This	tutorial	shows	you	how	you	can	use	Spring	Security,	Okta,	and	a	few	Java	libraries	to	secure	your	microservices	architecture.	Not	only	that,	but	I’ll	show	you	how	to	secure	everything,	so	even	your	backend	services	communicate	securely.	You’ll	learn	how	to	use	JWTs	and	Juiser	to	read	an	X-Forwarded-User	header
and	turn	it	into	a	Spring	Security	User.	This	tutorial	builds	off	Build	a	Microservices	Architecture	for	Microbrews	with	Spring	Boot.	A	simple	microservices	architecture	with	Spring	Boot	and	Spring	Cloud	looks	as	follows.	It	uses	Stormpath’s	Spring	Boot	Starter	(it’s	been	modified	to	work	with	Okta	while	we	work	on	building	up	Okta’s	Java	support)
and	Juiser,	a	library	created	by	Les	Hazlewood.	Juiser	is	independent	and	open	source,	and	is	not	tied	to	a	particular	identity	provider.	Once	you’ve	completed	this	tutorial,	you’ll	have	Spring	Security	locking	things	down,	and	Okta	providing	authentication	and	JWT	validation.	In	this	tutorial,	you’ll	build	a	microservices	architecture	with	Spring	Boot
and	related	projects.	To	add	security	with	Okta,	you’ll	have	to	create	two	applications	in	your	developer	console.	The	first	will	be	a	“Native”	application	that	supports	the	Stormpath	Java	SDK,	and	OAuth	grant	types	authorization	code,	refresh	token,	and	resource	owner	password.	This	type	of	application	is	typically	reserved	for	native	mobile
applications,	but	it	also	includes	the	Stormpath	Java	SDK.	This	is	because	the	Stormpath	SDK	was	retrofitted	to	work	with	Okta,	and	not	built	specifically	for	the	Okta	API,	per	se.	For	the	Angular	client,	you’ll	need	a	second	“SPA”	application.	To	begin,	you’ll	need	to	clone	the	aforementioned	article’s	completed	project.	git	clone	-b	v1.0	Create	an	Okta
Developer	account,	and	create	a	“Native”	application	that	works	with	the	Stormpath	Spring	Boot	Starter.	Here’s	an	abbreviated	list	of	steps:	In	the	developer	console,	navigate	to	Applications	>	Add	Application	Click	Native	and	Next	On	the	next	page,	enter	the	following	values	and	click	Done	Application	Name:	My	Test	App	Login	redirect	URIs:	After
your	application	has	been	created,	you	still	have	a	few	settings	you	need	to	change:	On	the	General	tab,	click	Edit	on	the	General	Settings	panel	Select	Refresh	Token	and	Resource	Owner	Password	and	click	Save	Click	Edit	on	the	Client	Credentials	panel	Select	Use	Client	Authentication	and	click	Save	Copy	and	save	the	Client	ID	for	your	application
At	this	point,	your	application’s	settings	should	look	as	follows:	You’ll	also	need	to	create	an	API	token:	On	the	top	menu,	click	on	API	>	Tokens	Click	Create	Token	On	the	modal,	give	your	new	token	a	name,	for	example:	Microservices,	and	click	Create	Token	Important:	You	will	need	to	remember	this	token	value,	so	copy/paste	it	somewhere	safe.
After	completing	these	steps,	you	should	have	the	information	you	need	to	set	the	following	environment	variables.	export	STORMPATH_CLIENT_BASEURL=https://{yourOktaDomain}	export	OKTA_APPLICATION_ID={clientId}	export	OKTA_API_TOKEN={apiToken}	export	OKTA_AUTHORIZATIONSERVER_ID=default	Add	Stormpath’s	Zuul
Support	to	the	Edge	Service	NOTE:	I’m	using	Stormpath’s	Java	SDK	in	this	example.	It	has	been	updated	to	work	with	Okta’s	API.	If	you’d	like	to	see	how	to	do	this	same	tutorial	using	Spring	Security	and	its	OAuth	support,	please	Secure	a	Spring	Microservices	Architecture	with	OAuth	2.0.	The	edge-service	application	handles	the	routing	to	the
backend	beer-catalog-service,	so	it’s	the	best	place	to	start	securing	things.	Add	the	Stormpath	BOM	(Bill	Of	Materials)	in	the	dependencyManagement	section	of	edge-service/pom.xml.	com.stormpath.sdk	stormpath-bom	2.0.4-okta	pom	import	Then	add	a	dependency	for	Stormpath’s	Zuul	integration.	com.stormpath.spring	stormpath-zuul-spring-
cloud-starter	Add	the	following	properties	and	values	to	edge-server/src/main/resources/application.properties.	server.use-forward-headers=true	zuul.routes.beer-catalog-service.path=/beers	zuul.routes.beer-catalog-service.url=	zuul.routes.home.path=/home	zuul.routes.home.url=	stormpath.web.cors.allowed.originUris=
stormpath.zuul.account.header.jwt.key.resource=classpath:rsatest.priv.pem	#	This	is	just	one	example	of	a	key	ID	-	anything	that	the	origin	server	can	make	sense	of	to	lookup	#	the	corresponding	public	key	is	fine.	Here	we	use	the	public	key	file	name.	stormpath.zuul.account.header.jwt.key.id=rsatest.pub.pem	Copy	the	rsatest.*	files	from	the
Stormpath	Zuul	example	project,	or	create	new	ones	using	the	following	command:	openssl	genrsa	-out	rsatest.priv.pem	2048	Generate	the	private	key’s	corresponding	rsatest.pub.pem	public	key	with:	openssl	rsa	-in	rsatest.priv.pem	-pubout	>	rsatest.pub.pem	After	copying	(or	generating),	both	rsatest.priv.pem	and	rsatest.pub.pem	files	should	be	in
edge-service/src/main/resources.	Add	Juiser	to	the	Beer	Catalog	Service	Juiser	is	a	small	Java	library	that	automates	token	authentication	during	an	HTTP	request.	In	this	example,	Juiser	reads	the	X-Forwarded-User	header	and	creates	a	Spring	Security	User	for	you.	For	Juiser	to	read	the	JWT	sent	by	Stormpath’s	Zuul	support,	you	need	to	copy	the
public	key	(rsatest.pub.pem)	from	edge-service/src/main/resources	to	beer-catalog-service/src/main/resources.	Then	add	the	following	dependencies	to	the	Beer	Catalog	Service’s	pom.xml.	...	1.56	1.0.0	org.juiser	juiser-spring-boot-starter	${juiser.version}	org.bouncycastle	bcpkix-jdk15on	${bouncycastle.version}	runtime	org.springframework.boot
spring-boot-starter-security	org.springframework.security	spring-security-config	org.springframework.security	spring-security-web	org.springframework.boot	spring-boot-starter-thymeleaf	...	Create	a	HomeController	in	src/main/java/com/example/beercatalogservice/HomeController.java	to	render	the	user’s	information	so	you	can	verify
authentication	is	working.	package	com.example.beercatalogservice;	import	org.juiser.model.User;	import	org.springframework.stereotype.Controller;	import	org.springframework.ui.Model;	import	org.springframework.web.bind.annotation.GetMapping;	@Controller	public	class	HomeController	{	private	final	User	user;	public	HomeController(User
user)	{	this.user	=	user;	}	@GetMapping("/home")	public	String	howdy(Model	model)	{	model.addAttribute("user",	user);	return	"home";	}	}	NOTE:	There	is	an	issue	with	Juiser	1.0.0	that	it	won’t	initialize	if	you	don’t	have	at	least	one	@Controller	in	your	project.	Create	a	home.html	template	in	beer-catalog-
service/src/main/resources/templates/home.html	and	populate	it	with	the	following	code.	th	{	text-align:	left;	}	td	{	white-space:	nowrap;	}	td:first-child	{	font-family:	"Courier",	monospace;	font-size:	0.9em;	color:	#343434;	}	Hello	Joe!	Login	User	Properties	Name	Value	anonymous	authenticated	href	id	name	givenName	middleName	familyName
nickname	username	profile	picture	website	email	emailVerified	gender	birthdate	zoneInfo	phoneNumber	phoneNumberVerified	createdAt	updatedAt	Add	the	following	properties	to	beer-catalog-service/src/main/resources/application.properties	to	configure	Juiser.	server.use-forward-headers=true
juiser.header.jwt.key.resource=classpath:rsatest.pub.pem	Create	a	SecurityConfig.java	class	in	the	same	package	as	HomeController.	This	class	configures	Spring	Security	so	it	secures	all	endpoints.	package	com.example.beercatalogservice;	import	org.springframework.context.annotation.Configuration;	import
org.springframework.security.config.annotation.web.builders.HttpSecurity;	import	org.springframework.security.config.annotation.web.configuration.WebSecurityConfigurerAdapter;	@Configuration	public	class	SecurityConfig	extends	WebSecurityConfigurerAdapter	{	@Override	protected	void	configure(HttpSecurity	http)	throws	Exception	{
http.authorizeRequests().anyRequest().fullyAuthenticated();	}	}	Add	RequestInterceptor	for	Feign	The	@FeignClient	used	to	talk	to	beer-catalog-service	is	not	aware	of	the	X-Forwarded-User	header.	To	make	it	aware,	create	a	ForwardedAccountRequestInterceptor	class	in	the	same	directory	as	EdgeServiceApplication.	package
com.example.edgeservice;	import	com.stormpath.sdk.servlet.http.Resolver;	import	com.stormpath.zuul.account.ForwardedAccountHeaderFilter;	import	feign.RequestInterceptor;	import	feign.RequestTemplate;	import	org.slf4j.Logger;	import	org.slf4j.LoggerFactory;	import	org.springframework.web.context.request.RequestContextHolder;	import
org.springframework.web.context.request.ServletRequestAttributes;	import	javax.servlet.http.HttpServletRequest;	import	javax.servlet.http.HttpServletResponse;	public	class	ForwardedAccountRequestInterceptor	implements	RequestInterceptor	{	private	static	final	Logger	LOGGER	=
LoggerFactory.getLogger(ForwardedAccountRequestInterceptor.class);	private	final	Resolver	valueResolver;	public	ForwardedAccountRequestInterceptor(Resolver	accountStringResolver)	{	this.valueResolver	=	accountStringResolver;	}	@Override	public	void	apply(RequestTemplate	template)	{	if
(template.headers().containsKey(ForwardedAccountHeaderFilter.DEFAULT_HEADER_NAME))	{	LOGGER.warn("The	X-Forwarded-User	has	been	already	set");	}	else	{	LOGGER.debug("Constructing	Header	{}	for	Account",	ForwardedAccountHeaderFilter.DEFAULT_HEADER_NAME);	HttpServletRequest	request	=	((ServletRequestAttributes)
RequestContextHolder.getRequestAttributes()).getRequest();	HttpServletResponse	response	=	((ServletRequestAttributes)	RequestContextHolder.getRequestAttributes()).getResponse();	template.header(ForwardedAccountHeaderFilter.DEFAULT_HEADER_NAME,	valueResolver.get(request,	response));	}	}	}	Register	it	as	a	@Bean	in
EdgeServiceApplication.	import	org.springframework.context.annotation.Bean;	import	feign.RequestInterceptor;	import	org.springframework.beans.factory.annotation.Qualifier;	import	com.stormpath.sdk.servlet.http.Resolver;	...	public	class	EdgeServiceApplication	{	public	static	void	main(String[]	args)	{
SpringApplication.run(EdgeServiceApplication.class,	args);	}	@Bean	public	RequestInterceptor	forwardedAccountRequestInterceptor(@Qualifier("stormpathForwardedAccountHeaderValueResolver")	Resolver	accountStringResolver)	{	return	new	ForwardedAccountRequestInterceptor(accountStringResolver);	}	}	While	you’re	modifying
EdgeServiceApplication,	change	the	HystrixCommand	in	BeerController	to	make	Hystrix	execute	on	the	calling	thread	(so	it’s	aware	of	the	security	context).	import	com.netflix.hystrix.contrib.javanica.annotation.HystrixProperty;	...	@HystrixCommand(fallbackMethod	=	"fallback",	commandProperties	=	{
@HystrixProperty(name="execution.isolation.strategy",	value="SEMAPHORE")	})	NOTE:	There	is	an	issue	with	the	Stormpath	Zuul	Starter	where	it	doesn’t	work	with	Spring	Cloud	Edgeware.SR1.	Change	edge-service/pom.xml	to	have	Dalston.RELEASE	to	workaround	this	issue.	Verify	Secure	Communication	Verify	communication	between	the
edge-service	and	beer-catalog-service	works	by	starting	all	the	Spring	Boot	applications.	First,	start	eureka-service:	cd	eureka-service	./mvnw	spring-boot:run	In	a	new	terminal	window,	start	beer-catalog-service:	cd	beer-catalog-service	./mvnw	spring-boot:run	In	another	terminal	window,	start	edge-service:	cd	edge-service	./mvnw	spring-boot:run
Open	your	browser	and	navigate	to	.	You	should	see	a	login	page,	prompting	for	your	credentials.	This	page	is	served	up	from	the	stormpath-zuul-spring-cloud-starter	using	Thymeleaf.	Spring	Boot	auto-activates	Thymeleaf	when	it	finds	it	in	the	classpath.	After	logging	in,	you	should	see	a	page	displaying	your	user’s	information.	Click	the	Logout
button	to	delete	the	cookies	in	your	browser	and	end	your	session.	To	use	Okta’s	Sign-In	Widget,	you’ll	need	to	create	an	additional	app	in	Okta,	this	time	for	a	SPA	(Single-Page	Application).	Create	an	OIDC	app	in	Okta	by	going	to	the	Developer	Console	and	navigating	to	Applications	and	click	on	the	Add	Application	button.	Select	SPA	and	click
Next.	On	the	next	page,	specify	as	a	Base	URI,	Login	redirect	URI,	and	Logout	redirect	URI.	Click	Done	and	you	should	see	settings	like	the	following.	Install	Okta’s	Sign-In	Widget	to	make	it	possible	to	communicate	with	the	secured	server.	cd	client	npm	install	npm	install	@okta/okta-signin-widget	--save	Add	the	widget’s	CSS	to	src/styles.css:
@import	'~@okta/okta-signin-widget/dist/css/okta-sign-in.min.css';	@import	'~@okta/okta-signin-widget/dist/css/okta-theme.css';	Create	client/src/app/shared/okta/okta.service.ts	and	use	it	to	configure	the	widget	to	talk	to	your	Okta	instance.	import	{	Injectable	}	from	'@angular/core';	import	*	as	OktaSignIn	from	'@okta/okta-signin-widget';
@Injectable()	export	class	OktaService	{	widget;	constructor()	{	this.widget	=	new	OktaSignIn({	baseUrl:	'https://{yourOktaDomain}',	clientId:	'{clientId}',	authParams:	{	issuer:	'default',	responseType:	['id_token',	'token'],	scopes:	['openid',	'email',	'profile']	}	});	}	getWidget()	{	return	this.widget;	}	getIdToken()	{	return
this.widget.tokenManager.get('idToken');	}	getAccessToken()	{	return	this.widget.tokenManager.get('accessToken');	}	}	Make	sure	to	replace	{yourOktaDomain}	and	{clientId}	in	the	above	code.	Add	OktaService	as	a	provider	to	client/src/app/app.module.ts.	import	{	OktaService	}	from	'./shared/okta/okta.service';	@NgModule({	...	providers:
[OktaService],	bootstrap:	[AppComponent]	})	export	class	AppModule	{	}	Modify	client/src/app/shared/beer/beer.service.ts	to	read	the	access	token	and	set	it	in	an	Authorization	header	when	it	exists.	import	{	Injectable	}	from	'@angular/core';	import	{	HttpClient,	HttpHeaders	}	from	'@angular/common/http';	import	{	Observable	}	from
'rxjs/Observable';	import	{	OktaService	}	from	'../okta/okta.service';	@Injectable()	export	class	BeerService	{	constructor(private	http:	HttpClient,	private	oktaService:	OktaService)	{	}	getAll():	Observable	{	let	headers:	HttpHeaders	=	new	HttpHeaders();	if	(this.oktaService.getAccessToken())	{	const	accessToken	=
this.oktaService.getAccessToken();	//	headers	is	immutable,	so	re-assign	headers	=	headers.append('Authorization',	accessToken.tokenType	+	'	'	+	accessToken.accessToken);	}	return	this.http.get('	,	{headers:	headers});	}	}	Modify	app.component.html	to	add	a	placeholder	for	the	widget	and	a	section	to	show	the	user’s	name	and	a	logout	button.
Welcome	to	{{title}}!	Welcome	{{user?.name}}!	Logout	You’ll	notice	the	user	variable	in	the	HTML.	To	resolve	this,	you	need	to	change	your	src/app/app.component.ts	so	it	renders	the	Sign-In	Widget.	Angular’s	ChangeDetectorRef	is	used	to	notify	Angular	when	things	have	changed	and	rendering	needs	to	process	changed	variables.	import	{
ChangeDetectorRef,	Component,	OnInit	}	from	'@angular/core';	import	{	OktaService	}	from	'./shared/okta/okta.service';	@Component({	selector:	'app-root',	templateUrl:	'./app.component.html',	styleUrls:	['./app.component.css']	})	export	class	AppComponent	implements	OnInit	{	title	=	'app';	user;	signIn;	constructor(private	oktaService:
OktaService,	private	changeDetectorRef:	ChangeDetectorRef)	{	this.signIn	=	oktaService.getWidget();	}	showLogin()	{	this.signIn.renderEl({el:	'#okta-signin-container'},	(response)	=>	{	if	(response.status	===	'SUCCESS')	{	response.forEach(token	=>	{	if	(token.idToken)	{	this.signIn.tokenManager.add('idToken',	token);	this.user	=
this.getUser(token);	}	if	(token.accessToken)	{	this.signIn.tokenManager.add('accessToken',	token);	}	});	this.signIn.remove();	this.changeDetectorRef.detectChanges();	}	});	}	getUser(token)	{	return	{	name:	token.claims.name,	email:	token.claims.email,	username:	token.claims.preferred_username	};	}	ngOnInit()	{	this.signIn.session.get((response)
=>	{	if	(response.status	!==	'INACTIVE')	{	const	token	=	this.oktaService.getIdToken();	this.user	=	this.getUser(token);	this.changeDetectorRef.detectChanges();	}	else	{	this.showLogin();	}	});	}	logout()	{	this.signIn.signOut(()	=>	{	this.user	=	undefined;	this.changeDetectorRef.detectChanges();	this.showLogin();	});	}	}	In	order	for	the
BeerListComponent	(at	src/app/beer-list/beer-list.component.ts)	to	detect	that	you’ve	logged	in,	you	need	to	use	add	a	constructor	dependency	on	ChangeDetectorRef	and	invoke	its	detectChanges()	method	when	you	set	the	giphyUrl	property	on	each	beer.	import	{	ChangeDetectorRef,	Component,	OnInit	}	from	'@angular/core';	import	{
BeerService,	GiphyService	}	from	'../shared';	@Component({	selector:	'app-beer-list',	templateUrl:	'./beer-list.component.html',	styleUrls:	['./beer-list.component.css'],	providers:	[BeerService,	GiphyService]	})	export	class	BeerListComponent	implements	OnInit	{	beers:	Array;	constructor(private	beerService:	BeerService,	private	giphyService:
GiphyService,	private	changeDetectorRef:	ChangeDetectorRef)	{	}	ngOnInit()	{	this.beerService.getAll().subscribe(data	=>	{	this.beers	=	data;	for	(const	beer	of	this.beers)	{	this.giphyService.get(beer.name).subscribe(url	=>	{	beer.giphyUrl	=	url;	this.changeDetectorRef.detectChanges();	});	}	},	error	=>	console.log(error))	}	}	Verify
Authentication	Works	Start	the	client	with	npm	start,	navigate	to	,	and	you	should	see	a	login	form	like	the	following.	NOTE:	If	it	logs	you	in	automatically,	this	is	likely	because	you	have	cookies	for	still	in	your	browser.	Clear	your	cookies,	or	try	an	incognito	window.	If	you	want	to	adjust	the	style	of	the	form,	so	it	isn’t	right	up	against	the	top	toolbar,
add	the	following	to	client/src/styles.css.	#okta-signin-container	{	margin-top:	25px;	}	You	should	be	able	to	log	in,	see	a	welcome	message,	as	well	as	a	logout	button.	Learn	More	This	article	showed	you	how	to	use	Spring	Security,	Okta,	and	a	few	Java	libraries	to	secure	a	microservices	architecture.	With	JWTs,	Zuul,	Spring	Security,	and	Juiser,	you
can	ensure	your	backend	services	communicate	securely.	The	source	code	for	this	tutorial	is	available	on	GitHub,	in	the	“okta”	branch.	git	clone	git	checkout	okta	Learn	more	about	Okta	and	its	APIs	at	developer.okta.com.	If	you	have	questions	about	this	tutorial,	please	hit	me	up	on	Twitter	@mraible	or	post	a	question	to	Stack	Overflow	with	an
“okta”	tag.	Update:	To	learn	how	to	lock	down	this	application	with	Spring	Security	and	OAuth,	see	Secure	a	Spring	Microservices	Architecture	with	Spring	Security	and	OAuth	2.0.	Page	14	Need	to	decouple	your	web	service	and	client?	You’re	probably	using	REST	endpoints,	and	if	you’re	a	Java	shop	you’ve	probably	tried	out	JAX-RS,	Spring	REST,
or	both.	But	is	one	better	than	the	other?	In	this	post	I’ll	go	over	the	differences	between	the	two	using	basically	the	same	code	for	an	apples	to	apples	comparison.	In	future	posts	I’ll	show	you	how	easy	it	is	to	secure	these	REST	endpoints	using	Apache	Shiro	and	Okta.	Lay	Down	the	Foundation	–	Model	and	DAO	To	keep	things	focused,	I’ll	leave	the
Maven	dependencies	out	of	this	post.	You	can	browse	the	full	source	on	GitHub,	the	pom	files	should	be	self	explanatory:	one	for	JAX-RS,	another	for	Spring.	First	up,	we	need	to	get	the	common	bits	out	of	the	way.	A	simple	model	and	DAO	(Data	Access	Object)	will	be	used	in	all	of	the	examples	to	register	and	manage	Stormtrooper	objects.	public
class	Stormtrooper	{	private	String	id;	private	String	planetOfOrigin;	private	String	species;	private	String	type;	public	Stormtrooper()	{	//	empty	to	allow	for	bean	access	}	public	Stormtrooper(String	id,	String	planetOfOrigin,	String	species,	String	type)	{	this.id	=	id;	this.planetOfOrigin	=	planetOfOrigin;	this.species	=	species;	this.type	=	type;	}	...
//	bean	accessor	methods	The	Stormtrooper	object	contains	an	id	and	a	few	other	attributes:	planetOfOrigin,	species,	and	type.	The	DAO	interface	is	just	as	simple,	with	the	basic	CRUD	methods	and	an	additional	list	method:	public	interface	StormtrooperDao	{	Stormtrooper	getStormtrooper(String	id);	Stormtrooper	addStormtrooper(Stormtrooper
stormtrooper);	Stormtrooper	updateStormtrooper(String	id,	Stormtrooper	stormtrooper);	boolean	deleteStormtrooper(String	id);	Collection	listStormtroopers();	}	The	actual	implementation	of	the	StormtrooperDao	is	not	important	for	these	examples,	If	you	are	interested,	you	can	take	a	look	at	code	for	DefaultStormtrooperDao,	which	generates	50
random	Stormtroopers.	Try	Spring	Now	that	we	have	the	common	bits	out	of	the	way,	we	can	get	into	the	meat	of	our	Spring	example.	A	basic	Spring	Boot	app	doesn’t	get	much	easier	than	this:	@SpringBootApplication	public	class	SpringBootApp	{	@Bean	protected	StormtrooperDao	stormtrooperDao()	{	return	new	DefaultStormtrooperDao();	}
public	static	void	main(String[]	args)	{	SpringApplication.run(SpringBootApp.class,	args);	}	}	There	are	a	few	things	to	point	out:	The	@SpringBootApplication	annotation	sets	up	Spring’s	auto	configuration	and	classpath	scanning	of	components	@Bean	binds	an	instance	of	DefaultStormtrooperDao	to	the	StormtrooperDao	interface	The	main	method
starts	the	application	uses	the	SpringApplication.run()	helper	method	to	bootstrap	the	application	Spring	Controller	Next	up,	we	have	the	implementation	of	our	REST	endpoint,	or	in	the	Spring	world	a	Controller.	We	will	use	this	class	to	map	our	DAO	to	incoming	HTTP	requests.	@RestController	@RequestMapping("/troopers")	public	class
StormtrooperController	{	private	final	StormtrooperDao	trooperDao;	@Autowired	public	StormtrooperController(StormtrooperDao	trooperDao)	{	this.trooperDao	=	trooperDao;	}	@GetMapping	public	Collection	listTroopers()	{	return	trooperDao.listStormtroopers();	}	@GetMapping("/{id}")	public	Stormtrooper	getTrooper(@PathVariable("id")
String	id)	throws	NotFoundException	{	Stormtrooper	stormtrooper	=	trooperDao.getStormtrooper(id);	if	(stormtrooper	==	null)	{	throw	new	NotFoundException();	}	return	stormtrooper;	}	@PostMapping	public	Stormtrooper	createTrooper(@RequestBody	Stormtrooper	trooper)	{	return	trooperDao.addStormtrooper(trooper);	}
@PostMapping("/{id}")	public	Stormtrooper	updateTrooper(@PathVariable("id")	String	id,	@RequestBody	Stormtrooper	updatedTrooper)	throws	NotFoundException	{	return	trooperDao.updateStormtrooper(id,	updatedTrooper);	}	@DeleteMapping("/{id}")	@ResponseStatus(value	=	HttpStatus.NO_CONTENT)	public	void
deleteTrooper(@PathVariable("id")	String	id)	{	trooperDao.deleteStormtrooper(id);	}	}	Let’s	break	this	down:	@Controller	@RequestMapping("/troopers")	public	class	StormtroooperController	{	The	@RestController	is	a	convenience	annotation	for	both	@Controller	and	@ResponseBody	which	marks	this	class	as	a	web	component	discovered	during
classpath	scanning.	An	@RequestMapping	annotation	at	the	the	class	level	defines	the	base	path	mapping	used	for	any	other	RequestMapping	annotations	in	this	class.	In	this	case,	all	end	points	in	this	class	will	start	with	the	URL	path	/troopers.	@PostMapping("/{id}")	public	@ResponseBody	Stormtrooper	updateTrooper(@PathVariable("id")	String
id,	@RequestBody	Stormtrooper	updatedTrooper)	throws	NotFoundException	{	return	trooperDao.updateStormtrooper(id,	updatedTrooper);	}	The	PostMapping	is	an	POST	alias	for	the	@RequestMapping	annotation	which	has	many	options,	this	example	uses	a	small	subset:	path	=	"/{id}"	used	in	conjunction	with	@PathVariable("id")	maps	the	{id}
part	of	the	URL	path	to	the	given	method	argument	-	Example	URL:	/troopers/FN-2187	value	=	HttpStatus.NO_CONTENT	sets	the	expected	HTTP	response	code,	in	this	case	a	204	Method	parameters	annotated	with	@RequestBody	will	be	deserialize	from	the	HTTP	request	before	getting	passed	into	the	method.	Return	values	are	directly	serialized
to	HTTP	response	using	the	@ResponseBody	annotation	(or	simply	by	using	@RestController),	which	will	also	bypass	any	MCV	templates.	In	this	code	block	the	updateTrooper()	method	accepts	HTTP	POST	requests	made	to	/trooper/{id}	and	contain	a	serialized	Stormtrooper	(JSON).	If	the	request	path	was	/troopers/FN-2187,	the	id	portion	of	the
path	would	be	assigned	to	the	method’s	id	parameter.	An	updated	Stormtrooper	object	is	returned	and	serialized	to	the	HTTP	response.	In	the	example	above	we	are	simply	using	a	POST	for	both	the	create	and	update	methods.	To	keep	the	example	short	and	sweet,	the	DAO	implementation	doesn’t	actually	do	partial	updates,	so	this	should	actually
be	a	PUT.	Take	a	look	at	this	blog	post	to	read	more	about	when	to	use	PUT	vs	POST.	Run	the	Spring	Example	To	run	this	example,	grab	the	source,	change	to	the	spring-boot	directory,	start	the	application	using	mvn	spring-boot:run,	make	requests	to	the	server.	To	get	get	a	list	of	all	the	Stormtroopers	just	make	a	request	to	/troopers	$	curl
HTTP/1.1	200	Content-Type:	application/json;charset=UTF-8	Date:	Tue,	08	Nov	2016	20:33:36	GMT	Transfer-Encoding:	chunked	X-Application-Context:	application	[{	"id":	"FN-2187",	"planetOfOrigin":	"Unknown",	"species":	"Human",	"type":	"Basic"	},	{	"id":	"FN-0984",	"planetOfOrigin":	"Coruscant",	"species":	"Human",	"type":	"Aquatic"	},	{	"id":
"FN-1253",	"planetOfOrigin":	"Tatooine",	"species":	"Unidentified",	"type":	"Sand"	},	...]	To	get	a	single	Stormtrooper,	use	its	ID:	$	curl	HTTP/1.1	200	Content-Type:	application/json;charset=UTF-8	Date:	Tue,	08	Nov	2016	20:38:53	GMT	Transfer-Encoding:	chunked	X-Application-Context:	application	{	"id":	"FN-2187",	"planetOfOrigin":	"Unknown",
"species":	"Human",	"type":	"Basic"	}	Pretty	easy,	right?	Now	you	can	stop	the	server	with	a	Ctrl-C	and	move	on	to	the	next	example.	Rinse	and	Repeat	–	JAX-RS	We’ll	use	the	same	model	and	DAO	for	the	JAX-RS	example,	all	we’re	going	to	change	is	the	annotations	on	the	StormtroooperController	class.	Since	JAX-RS	is	an	API	spec	you	need	to	pick	an
implementation,	we	will	use	Jersey	for	this	example.	While	it’s	possible	to	create	a	JAX-RS	application	with	no	direct	dependencies	on	a	specific	JAX-RS	implementation,	it	would	make	for	a	more	verbose	example.	I	picked	Jersey	for	a	couple	reasons,	mostly	though	it	was	because	I	already	knew	how	get	simple	dependency	injection	working	without
jumping	through	any	hoops,	we	are	comparing	this	to	Spring	after	all.	Apache	Shiro	has	an	example	that	runs	the	same	code	on	Jersey,	RestEasy,	and	Apache	CXF,	if	you’re	interested	in	seeing	a	portable	example.	This	example	also	differs	a	bit	from	the	Spring	Boot	one	in	that	this	example	is	packaged	as	a	WAR,	and	Spring	Boot	was	a	single	JAR.
Packing	this	example	in	an	executable	jar	is	possible,	but	outside	the	scope	of	this	post	A	JAX-RS	equivalent	to	a	SpringBootApplication	is	an	Application	class.	A	Jersey	subclass	of	Application,	ResourceConfig,	adds	a	few	handy	utility	methods.	The	following	snippet	configures	classpath	scanning	to	detect	our	individual	resource	classes,	and	bind	a
DefaultStormtrooperDao	instance	to	the	StromtrooperDao	interface.	@ApplicationPath("/")	public	class	JaxrsApp	extends	ResourceConfig	{	public	JaxrsApp()	{	//	scan	the	resources	package	for	our	resources	packages(getClass().getPackage().getName()	+	".resources");	//	use	@Inject	to	bind	the	StormtrooperDao	register(new	AbstractBinder()	{
@Override	protected	void	configure()	{	bind(stormtrooperDao()).to(StormtrooperDao.class);	}	});	}	private	StormtrooperDao	stormtrooperDao()	{	return	new	DefaultStormtrooperDao();	}	}	One	other	thing	to	point	out,	in	the	above	class	the	@ApplicationPath	annotation	marks	this	class	as	a	JAX-RS	Application	bound	to	a	specific	url	path,	in	our	case
to	match	the	Spring	example	above	we	will	just	use	the	root	path:	/.	Each	resource	detected	in	the	resources	package	will	be	appended	to	this	base	path.	The	JAX-RS	resource	implementation	looks	very	similar	to	the	Spring	version	above	(renamed	to	StormtroooperResource,	to	match	naming	conventions):	@Path("/troopers")
@Produces("application/json")	public	class	StormtroooperResource	{	@Inject	private	StormtrooperDao	trooperDao;	@Path("/{id}")	@GET	public	Stormtrooper	getTrooper(@PathParam("id")	String	id)	throws	NotFoundException	{	Stormtrooper	stormtrooper	=	trooperDao.getStormtrooper(id);	if	(stormtrooper	==	null)	{	throw	new
NotFoundException();	}	return	stormtrooper;	}	@POST	public	Stormtrooper	createTrooper(Stormtrooper	trooper)	{	return	trooperDao.addStormtrooper(trooper);	}	@Path("/{id}")	@POST	public	Stormtrooper	updateTrooper(@PathParam("id")	String	id,	Stormtrooper	updatedTrooper)	throws	NotFoundException	{	return
trooperDao.updateStormtrooper(id,	updatedTrooper);	}	@Path("/{id}")	@DELETE	public	void	deleteTrooper(@PathParam("id")	String	id)	{	trooperDao.deleteStormtrooper(id);	}	@GET	public	Collection	listTroopers()	{	return	trooperDao.listStormtroopers();	}	}	To	break	down	this	example	a	bit,	we	first	have	the	class	deceleration:	@Path("/troopers")
@Produces("application/json")	public	class	StormtroooperResource	{	Similar	to	the	Spring	example	above	the	@Path	at	the	class	level	means	each	annotated	method	in	this	class	will	be	under	the	/troopers	base	path.	The	@Produces	annotation	defines	the	default	response	content	type	(unless	overridden	by	an	annotation	on	another	method).	Unlike
the	Spring	example	where	a	@RequestMapping	annotation	defined	the	path,	method,	and	other	attributes	of	the	request,	in	a	JAX-RS	resource	each	attribute	uses	a	separate	annotation.	Similar	to	above	if	we	break	down	the	updateTrooper()	method:	@Path("/{id}")	@POST	public	Stormtrooper	updateTrooper(@PathParam("id")	String	id,
Stormtrooper	updatedTrooper)	throws	NotFoundException	{	return	trooperDao.updateStormtrooper(id,	updatedTrooper);	}	We	see	that	@Path("/{id}")	along	with	@PathParam("id")	allows	the	id	portion	of	the	path	to	be	translated	into	a	method	argument.	What	differs	from	the	Spring	example,	is	that	the	Stromtrooper	parameter	and	return	value	do
not	need	extra	annotations,	they	are	automatically	serialized/deserialized	into	JSON	due	to	the	@Produces("application/json")	annotation	on	this	class.	Run	the	JAX-RS	Example	This	example	can	be	started	from	the	jersey	directory,	using	the	maven	command:	mvn	jetty:run.	Making	the	same	two	requests	as	above,	we	can	list	all	of	the	troopers	with	a
GET	request	to	the	base	resource:	$	curl	HTTP/1.1	200	OK	Content-Length:	3944	Content-Type:	application/json	Date:	Tue,	08	Nov	2016	21:57:55	GMT	Server:	Jetty(9.3.12.v20160915)	[{	"id":	"FN-2187",	"planetOfOrigin":	"Unknown",	"species":	"Human",	"type":	"Basic"	},	{	"id":	"FN-0064",	"planetOfOrigin":	"Naboo",	"species":	"Nikto",	"type":
"Sand"	},	{	"id":	"FN-0069",	"planetOfOrigin":	"Hoth",	"species":	"Twi'lek",	"type":	"Basic"	},	{	"id":	"FN-0169",	"planetOfOrigin":	"Felucia",	"species":	"Kel	Dor",	"type":	"Jump"	},	...	Or	again	to	a	GET	to	a	specific	resource:	$	curl	HTTP/1.1	200	OK	Content-Length:	81	Content-Type:	application/json	Date:	Tue,	08	Nov	2016	22:00:02	GMT	Server:
Jetty(9.3.12.v20160915)	{	"id":	"FN-2187",	"planetOfOrigin":	"Unknown",	"species":	"Human",	"type":	"Basic"	}	Now	we	have	seen	basically	the	same	code	run	in	both	Spring	and	JAX-RS	applications	by	simply	changing	the	annotations.	I	like	the	JAX-RS	annotations	better,	they’re	more	concise.	That	said,	why	choose	between	the	two?	Jersey	and
RestEasy	both	support	Spring	(along	with	Guice	and	CDI/Weld).	Let’s	create	a	third	example	combining	the	two	JAX-RS	and	Spring	–	So	Happy	Together	For	this	example	we	need	three	classes:	a	Spring	Boot	application,	Jersey	configuration,	and	our	resource.	Our	SpringBootApp	and	StormtrooperResource	classes	are	identical	to	the	previous
versions,	the	only	difference	being	the	Jersey	configuration	class:	@Component	public	class	JerseyConfig	extends	ResourceConfig	{	public	JerseyConfig()	{	//	scan	the	resources	package	for	our	resources	packages(getClass().getPackage().getName()	+	".resources");	}	}	This	class	is	a	bit	slimmer	than	the	previous	example.	First,	you	probably	noticed
the	@Configuration	annotation	which	is	used	to	mark	this	class	managed	by	Spring.	All	that	is	left,	is	to	instruct	Jersey	to	scan	the	resources	package	again,	the	rest	is	handled	for	you	(see	what	I	did	there?!).	From	the	spring-jaxrs	directory,	this	example	can	be	started	with	the	same	mvn	spring-boot:run	command.	Spring	to	JAX-RS	Cheat	Sheet	To
help	you	navigate	between	the	world	of	Spring	and	JAX-RS	here	is	a	quick	cheat	sheet.	This	is	not	an	exhaustive	list,	but	it	does	include	the	most	common	annotations.	Spring	Annotation	JAX-RS	Annotation	@RequestMapping(path	=	“/troopers”	@Path(“/troopers”)	@PostMapping	@POST	@PutMapping	@PUT	@GetMapping	@GET	@DeleteMapping
@DELETE	@ResponseBody	N/A	@RequestBody	N/A	@PathVariable(“id”)	@PathParam(“id”)	@RequestParam(“xyz”)	@QueryParam(‘xyz”)	@RequestParam(value=”xyz”)	@FormParam(“xyz”)	@RequestMapping(produces	=	{“application/json”})	@Produces(“application/json”)	@RequestMapping(consumes	=	{“application/json”})
@Consumes(“application/json”)	When	Should	You	Use	JAX-RS	over	Spring	Rest?	In	my	opinion	it	breaks	down	like	this:	If	you’re	already	a	Spring	shop,	just	use	Spring.	If	you’re	creating	an	object	JSON	/	XML	REST	layer,	JAX-RS	resources	backed	by	the	DI	framework	of	your	choice	(Spring,	Guice,	etc.)	might	be	the	way	to	go.	Rendering	pages	server
side	is	not	part	of	the	JAX-RS	spec	(though	it	is	supported	with	extensions).	I	hacked	up	a	Thymeleaf	view	for	Jersey	once,	but	I	think	Spring	MVC	takes	the	cake	here.	Now,	comparing	a	Spring	Boot	application	and	an	WAR	packaged	application,	isn’t	exactly	comparing	apples	to	apples.	Dropwizard	(which	uses	an	embedded	Jetty	container	and	Jersey)
is	probably	the	closest	thing	to	a	Spring	Boot	app.	Hopefully	this	post	gave	you	a	bit	more	background	so	you	can	do	your	own	comparison.	If	you	have	any	questions	hit	me	up	on	Twitter	@briandemers!	Want	to	learn	more	about	securing	your	Spring	or	JAX-RS	applications,	Apache	Shiro,	or	REST	fundamentals?	Take	a	look	at	these	posts:	Page	15
JSON	Web	Tokens	(JWTs)	are	so	hot	right	now.	They’re	all	the	rage	in	web	development:	Trendy?	✓	Secure?	✓	Scalable?	✓	Compact?	✓	JSON?	✓	With	all	these	amazing	things	going	for	JWTs,	they	seem	like	an	unstoppable	hype	train	headed	straight	for	Stack	Overflow	fame	and	fortune!	But…	today	I’m	here	to	talk	with	you	about	the	downsides	of
using	JWTs.	Specifically,	why	it’s	a	bad	idea	to	use	JWTs	as	session	tokens	for	most	people.	What	are	JWTs?	If	you	aren’t	already	familiar	with	JWTs,	don’t	panic!	They	aren’t	that	complicated!	The	way	I	like	to	think	of	JWTs	is	that	they’re	just	some	JSON	data	that	you	can	verify	came	from	someone	you	know.	Pretend	I’m	blind	and	hard	of	hearing.
Let’s	also	pretend	that	last	week	you	bought	me	lunch,	and	now	I	need	your	Venmo	address	to	pay	you	back.	If	I	ask	you	for	your	Venmo	address	in	person,	and	someone	else	shouts	their	Venmo	address,	I	might	accidentally	send	them	the	money	I	owe	you.	That’s	because	I	heard	someone	shout	a	Venmo	address,	and	I	trusted	that	it	was	you,	even
though	in	this	case,	it	wasn’t.	JWTs	were	designed	to	prevent	this	sort	of	thing	from	happening.	JWTs	give	people	an	easy	way	to	pass	data	between	each	other,	while	at	the	same	time	verifying	who	created	the	data	in	the	first	place.	So,	going	back	to	our	previous	example,	if	I	received	1,000,000	different	JWTs	that	contained	a	Venmo	address,	I’d
easily	be	able	to	tell	which	one	actually	came	from	you.	How	do	JWTs	Work?	JWTs	are	JSON	data,	encoded	as	a	string,	and	cryptographically	signed.	I	know	that	sounds	fancy,	but	it	really	isn’t.	The	core	of	any	JWT	is	claims.	Claims	are	the	JSON	data	inside	the	JWT.	It’s	the	data	you	care	about,	and	want	to	pass	along	securely	to	someone	else.	I’m	not
going	into	the	details	here,	but	just	know	that	JWTs	hold	JSON	data.	How	do	JWTs	make	it	so	that	you	know	whether	or	not	they	can	be	trusted?	Cryptographic	signatures.	Let’s	say	I	write	a	letter.	When	I	sign	that	letter,	I’m	“signing”	it.	This	means	that	anyone	who	reads	that	letter	will	know	that	I	wrote	it.	And,	because	my	signature	is	unique,	there
will	be	no	question	of	its	authenticity.	Cryptographic	signatures	work	in	much	the	same	way.	There	are	two	main	ways	to	“sign”	JWTs	cryptographically:	using	symmetric	or	asymmetric	keys.	Both	types	are	commonly	used,	and	provide	the	same	guarantees	of	authenticity.	JWTs	in	a	Nutshell	JWTs	aren’t	magic–they’re	just	blobs	of	JSON	that	have	been
cryptographically	signed.	Regardless	of	whether	they’re	symmetrically	or	asymmetrically	signed,	they	provide	the	same	guarantees:	you	can	trust	that	a	JWT	is	valid	and	created	by	someone	you	have	faith	in.	These	properties	of	JWTs	make	them	really	useful	in	certain	scenarios	where	you	need	to	assert	that	some	data	can	be	trusted	(such	as	when
using	federated	login/single	sign-on).	JWT	Encryption	Note	One	final	note	I	want	to	make	about	JWTs	before	moving	on:	their	contents	(the	JSON	data	inside	of	them)	are	usually	not	encrypted.	This	means	that	anyone	can	view	the	data	inside	the	JWT,	even	without	a	key.	JWTs	don’t	try	to	encrypt	your	data	so	nobody	else	can	see	it,	they	simply	help
you	verify	that	it	was	created	by	someone	you	trust.	Now,	if	you	do	want	to	encrypt	your	JWTs	you	can	do	so	by	using	JWE,	but	this	is	not	nearly	as	common	as	unencrypted	JWTs.	If	you	are	using	JWTs	and	need	encryption,	be	sure	you	use	the	right	thing!	How	are	People	Using	JWTs	Today?	The	most	common	use	case	for	JWTs	is	authentication.	There
are	tons	of	web	security	libraries	which	use	JWTs	as	session	tokens,	API	tokens,	etc.	The	idea	is	that	when	someone	authenticates	to	a	website/API,	the	server	will	generate	a	JWT	that	contains	the	user’s	ID,	as	well	as	some	other	critical	information,	and	then	send	it	to	the	browser/API/etc.	to	store	as	a	session	token.	When	that	user	visits	another	page
on	the	website,	for	instance,	their	browser	will	automatically	send	that	JWT	to	the	server,	which	will	validate	the	JWT	to	make	sure	that	it’s	the	same	token	it	created	originally,	then	let	the	user	do	stuff.	In	theory,	this	sounds	nice	because:	When	the	server	receives	a	JWT,	it	can	validate	that	it	is	legitimate	and	trust	that	the	user	is	whoever	the	token
says	they	are	The	server	can	validate	this	token	locally	without	making	any	network	requests,	talking	to	a	database,	etc.	This	can	potentially	make	session	management	faster	because	instead	of	needing	to	load	the	user	from	a	database	(or	cache)	on	every	request,	you	just	need	to	run	a	small	bit	of	local	code.	This	is	probably	the	single	biggest	reason
people	like	using	JWTs:	they	are	stateless.	These	two	perks	sound	great	because	they	will	speed	up	webapp	performance,	reduce	load	on	cache	servers	and	database	servers,	and	generally	provide	faster	experiences.	As	a	bonus	benefit,	as	the	webapp	creator	you	can	embed	other	information	about	the	user	into	your	JWT:	User	permissions	User
personal	information	Etc.	This	means	that	you	can	reduce	your	database	load	even	further	by	simply	embedding	extra	user	information	in	your	tokens	as	well!	Why	Do	JWTs	Suck?	Now	that	we’ve	seen	how	JWTs	are	used	for	authentication	purposes,	let’s	get	into	my	favorite	subject	of	all:	why	JWTs	are	not	good	session	tokens.	I	often	argue	with
coworkers,	colleagues,	and	friends	about	this,	so	it’s	nice	to	finally	get	all	my	thoughts	on	the	subject	down	in	bytes.	In	particular,	I	plan	to	explain	to	you	why	normal	old	sessions	are	superior	to	JWTs	in	almost	every	way.	Context	Before	I	start	making	web	developers	all	over	the	world	angry,	I	want	to	provide	some	context	into	my	reasoning.	Most
websites	that	developers	build	are	relatively	simple:	A	user	registers	for	the	website	A	user	signs	into	the	website	A	user	clicks	around	and	does	stuff	The	website	uses	the	user’s	information	to	create,	update,	and	delete	information	99.9%	of	all	websites	match	the	criteria	above.	For	these	types	of	websites,	what’s	important	to	know	is	that	almost
every	page	a	user	interacts	with	contains	some	sort	of	dynamic	data.	Odds	are,	if	you’re	running	a	website	that	requires	a	user	to	sign	in	to	use	it,	you’re	going	to	be	doing	things	with	that	user	in	your	database	often:	Recording	the	actions	a	user	is	taking	Adding	some	data	for	the	user	to	the	database	Checking	a	user’s	permissions	to	see	if	they	can
do	something	Etc.	The	important	thing	to	remember	is	that	most	sites	require	user	information	for	nearly	every	operation.	With	that	out	of	the	way,	let’s	get	into	the	reasons	why	JWTs	suck.	First	up?	Size.	Size	Let’s	take	a	look	at	two	scenarios:	Storing	a	user	ID	(abc123)	in	a	cookie	Storing	a	user	ID	(abc123)	in	a	JWT	If	we	store	the	ID	in	a	cookie,
our	total	size	is	6	bytes.	If	we	store	the	ID	in	a	JWT	(with	basic	header	fields	set,	as	well	as	a	reasonably	long	secret),	the	size	has	now	inflated	to	304	bytes.	For	storing	a	simple	user	session,	that	is	a	~51x	size	inflation	on	every	single	page	request	in	exchange	for	cryptographic	signing	(as	well	as	some	header	metadata).	For	reference,	here	were	the
JWT	claims	I	used	to	get	that	number:	{	"iss":	"	",	"sub":	"abc123",	"nbf":	1497934977,	"exp":	1497938577,	"iat":	1497934977,	"jti":	"1234567",	"typ":	"authtoken"	}	Let’s	say	that	your	website	gets	roughly	100k	page	views	per	month.	That	means	you’d	be	consuming	an	additional	~24MB	of	bandwidth	each	month.	That	doesn’t	sound	like	a	lot,	but
when	you’re	consistently	bloating	every	single	page	request,	all	the	little	things	start	to	add	up.	Also:	this	example	was	using	the	smallest	possible	amount	of	information	encoded	in	a	JWT.	In	reality,	many	people	end	up	storing	much	more	information	in	JWTs	than	just	a	user	ID,	greatly	increasing	these	byte	counts.	You’re	Going	to	Hit	the	Database
Anyway	As	I	mentioned	above,	most	websites	that	require	user	login	are	primarily	generating	dynamic	user	content	for	CRUD	operations	(create,	update,	delete).	The	issue	with	using	JWTs	on	these	websites	is	that	for	almost	every	single	page	the	user	loads,	the	user	object	needs	to	be	loaded	from	a	cache	/	database	because	one	of	the	following
situations	are	occurring:	A	mission	critical	user	check	needs	to	run	(eg:	does	this	user	have	enough	money	in	their	account	to	complete	the	transaction?)	A	database	write	needs	to	occur	to	persist	information	(if	this	information	is	related	to	the	user,	it’s	likely	that	the	full	user	object	must	also	be	retrieved	from	the	database)	The	full	user	object	must
be	pulled	out	of	the	cache	/	database	so	that	the	website	can	properly	generate	its	dynamic	page	content	Think	about	the	websites	you	build.	Do	they	often	manipulate	user	data?	Do	they	frequently	use	various	fields	on	the	user	account	to	work?	If	so,	your	site	falls	into	this	category,	and	you’ll	likely	be	talking	to	the	cache	server	/	database	regardless
of	whether	or	not	you’ve	got	a	JWT.	This	means	that	on	most	websites,	the	stateless	benefits	of	a	JWT	are	not	being	taken	advantage	of.	To	compound	this	issue,	since	JWTs	are	larger	(in	bytes)	and	also	require	CPU	to	compute	cryptographic	signatures,	they’re	actually	significantly	slower	than	traditional	sessions	when	used	in	this	manner.	Almost
every	web	framework	loads	the	user	on	every	incoming	request.	This	includes	frameworks	like	Django,	Rails,	Express.js	(if	you’re	using	an	authentication	library),	etc.	This	means	that	even	for	sites	that	are	primarily	stateless,	the	web	framework	you’re	using	is	still	loading	the	user	object	regardless.	Finally:	if	you’re	storing	your	user	information	in	a
modern	cache	like	memcached/redis,	it’s	not	uncommon	over	a	VPC	to	achieve	cache	GET	times	of	5ms	or	below,	which	is	extremely	fast.	I’ve	personally	used	DynamoDB	on	Amazon	in	the	past	as	a	session	store,	and	consistently	achieved	1ms	cache	retrieval	times.	Because	caching	systems	are	so	fast,	there’s	very	little	performance	overhead	when
retrieving	users	in	this	manner.	Redundant	Signing	One	of	the	main	selling	points	of	JWTs	are	cryptographic	signatures.	Because	JWTs	are	cryptographically	signed,	a	receiving	party	can	verify	that	the	JWT	is	valid,	and	trusted.	But…	what	would	you	say	if	I	told	you	that	in	pretty	much	every	single	web	framework	created	over	the	last	20	years,	you
could	also	get	the	benefits	of	cryptographic	signatures	when	using	plain	old	session	cookies?	Well,	you	can	=)	Most	web	frameworks	cryptographically	sign	(and	many	encrypt!)	your	cookies	for	you	automatically.	This	means	that	you	get	the	exact	same	benefits	as	using	JWT	signatures	without	using	JWTs	themselves.	In	fact,	in	most	web
authentication	cases,	the	JWT	data	is	stored	in	a	session	cookie	anyways,	meaning	that	there	are	now	two	levels	of	signing.	One	on	the	cookie	itself,	and	one	on	the	JWT.	While	having	two	levels	of	signing	may	sound	like	a	good	idea,	it	is	not.	You	get	no	security	benefits,	and	you’ve	now	got	to	spend	twice	as	long	on	CPU	cycles	to	validate	both
signatures.	Not	really	ideal	for	web	environments	where	milliseconds	are	important.	This	is	especially	true	in	single	threaded	environments	(cough	cough	nodejs)	where	number	crunching	can	block	your	main	event	loop.	What’s	a	Better	Solution?	If	JWTs	suck,	then	what’s	a	better	solution?	Plain	old	sessions!	If	you’re	building	a	simple	website	like	the
ones	described	above,	then	your	best	bet	is	to	stick	with	boring,	simple,	and	secure	server	side	sessions.	Instead	of	storing	a	user	ID	inside	of	a	JWT,	then	storing	a	JWT	inside	of	a	cookie:	just	store	the	user	ID	directly	inside	of	the	cookie	and	be	done	with	it.	If	your	website	is	popular	and	has	many	users,	cache	your	sessions	in	a	backend	like
memcached	or	redis,	and	you	can	easily	scale	your	service	with	very	little	hassle.	Excellent	quality	web	frameworks	like	Django	know	this,	which	is	why	they	operate	this	way.	How	Should	I	Use	JWTs?	It’s	important	to	note	that	I	don’t	hate	JWTs.	I	just	think	they’re	useless	for	a	majority	of	websites.	With	that	said,	however,	there	are	several	cases	in
which	JWTs	can	be	useful.	If	you’re	building	API	services	that	need	to	support	server-to-server	or	client-to-server	(like	a	mobile	app	or	single	page	app	(SPA))	communication,	using	JWTs	as	your	API	tokens	is	a	very	smart	idea.	In	this	scenario:	You	will	have	an	authentication	API	which	clients	authenticate	against,	and	get	back	a	JWT	Clients	then	use
this	JWT	to	send	authenticated	requests	to	other	API	services	These	other	API	services	use	the	client’s	JWT	to	validate	the	client	is	trusted	and	can	perform	some	action	without	needing	to	perform	a	network	validation	For	these	types	of	API	services,	JWTs	make	perfect	sense	because	clients	will	be	making	requests	frequently,	with	limited	scope,	and
usually	authentication	data	can	be	persisted	in	a	stateless	way	without	too	much	dependence	on	user	data.	If	you’re	building	any	type	of	service	where	you	need	three	or	more	parties	involved	in	a	request,	JWTs	can	also	be	useful.	In	this	case	the	requesting	party	will	have	a	token	to	prove	their	identity,	and	can	forward	it	to	the	third	(or	4th	…	nth)
service	without	needing	to	incur	a	real-time	validation	each	and	every	time.	Finally:	if	you’re	using	user	federation	(things	like	single	sign-on	and	OpenID	Connect),	JWTs	become	important	because	you	need	a	way	to	validate	a	user’s	identity	via	a	third	party.	Thanks	to	cryptographic	signing,	JWTs	make	a	valuable	addition	to	federated	user	protocols.
Wrap	Up	When	you	start	building	your	next	website,	just	rely	on	your	web	framework’s	default	authentication	libraries	and	tools,	and	stop	trying	to	shove	JWTs	into	the	mix	unnecessarily.	Finally,	if	you’re	interested	in	web	security	and	all	sorts	of	other	interesting	problems	in	the	authentication	space,	you	should	consider	signing	up	for	an	Okta
Developer	Account.	Our	API	service	stores	user	accounts	for	your	web	apps,	mobile	apps,	and	API	services,	and	makes	web	security	fun	again.	Or,	if	you’re	in	the	mood	to	read	some	other	interesting	security	articles,	we’ve	got	a	new	security	site	where	we	publish	lots	of	stuff	like	this.	If	you	have	any	questions,	feel	free	to	hit	me	up	on	Twitter
@rdegges.	Page	16	Okta	is	investing	heavily	into	making	developers	successful	by	creating	great	developer	experiences	through	updated	SDKs	and	integrations	as	well	as	new	pricing	and	packaging.	These	updates	are	intended	to	give	developers	everything	they	need	to	build	modern,	secure	applications.	But	equally	important	is	how	Okta	speaks	to
developers.	How	we	engage	with	the	community	and	build	our	reputation	with	a	wide	range	of	developers.	At	the	heart	of	that	effort,	is	our	Developer	Relations	(DevRel)	team.	In	this	post,	we’d	like	to	introduce	you	to	that	team	and	give	you	a	behind	the	scenes	glimpse	into	how	a	large,	successful	company	builds	an	authentic,	high-value	developer
relations	program	from	scratch.	How	to	Build	a	Developer	Relations	Team	Building	a	developer	relations	team	at	Okta	was	easy.	Stormpath	already	had	a	DevRel	team.	When	we	joined	forces	—	poof	—	it	all	came	together!	However,	building	a	DevRel	team	at	Stormpath	wasn’t	easy.	The	process	started	by	hiring	developers	that	could	create	and
maintain	SDKs	for	Stormpath’s	API.	Once	the	SDKs	were	created,	these	same	developers	started	advocating	for	their	respective	projects	through	blog	posts	and	speaking	engagements.	Ultimately,	this	meant	finding	people	who	were	a	special	combination	of	great	developers	with	great	taste	for	a	good	developer	experience,	who	also	genuinely	loved
helping	other	people	build	stuff,	and	were	already	actively	engaged	with	the	developer	community	because	they	loved	it.	So,	who	made	the	team?	Meet	the	Okta	DevRel	Team	The	DevRel	team	at	Okta	is	made	up	of	four	individual	contributors,	each	with	our	specialties.	Let	me	take	a	moment	and	introduce	them	to	you.	Randall	Degges	Randall	is	our
Lead	Developer	Advocate.	He	wrote	the	first	book	on	Heroku,	loves	to	hack	Python	and	JavaScript,	and	is	our	go-to	guy	when	it	comes	to	deployment	pipelines	and	AWS.	If	you’re	having	issues	with	Okta’s	Python	or	Node.js	SDKs,	Randall’s	the	guy	to	talk	to.	Nate	Barbettini	Nate	specializes	in	full-stack	.NET	and	JavaScript.	He	was	recently	granted
the	.NET	MVP	Award	from	Microsoft	for	his	contributions	to	the	.NET	community.	If	you’re	having	issues	with	our	.NET	SDK,	talk	to	Nate.	Lee	Brandt	Lee	also	specializes	in	.NET	and	JavaScript.	He’s	a	long-time	Microsoft	MVP	and	the	founder	of	KCDC	(Kansas	City	Developers	Conference).	KCDC	is	one	of	the	region’s	largest	developer	conferences
and	has	numerous	languages	and	communities	represented.	Lee	is	a	rockstar	in	.NET,	Angular,	and	React,	so	hit	him	up	if	you	have	issues	with	these	frameworks	and	Okta.	Matt	Raible	That’s	me!	I’m	Matt	Raible	and	I	started	as	a	web	developer,	then	a	Java	developer	for	about	a	decade,	and	then	got	back	into	UI	development.	I’m	a	Java	Champion
and	like	to	code	in	both	Java	and	JavaScript,	though	TypeScript	has	been	a	lot	of	fun	lately.	If	you’re	having	issues	with	our	Java	SDK,	Spring	Boot,	our	Sign-In	Widget,	or	anything	Angular,	let	me	know!	Why	Developer	Relations?	We	have	a	Developer	Relations	team	at	Okta	because	we	recognize	that	the	decision	maker	for	software	has	changed.	In
the	past,	companies	that	sell	software	could	sell	it	via	marketing,	using	a	top-down	approach	that	targeted	CEOs	or	CTOs.	Some	companies	still	sell	software	this	way,	but	the	market	has	changed	and	developers	have	become	the	dominate	decision	makers.	Especially	when	it	comes	to	choosing	software	that	their	applications	interact	with.	Need
proof?	See	Stephen	O’Grady’s	The	New	Kingmakers.	While	the	actual	number	might	be	up	for	debate,	the	importance	of	technical	talent	is	not.	The	most	successful	companies	today	are	those	that	understand	the	strategic	role	that	developers	will	play	in	their	success	or	failure.	Not	just	successful	technology	companies	–	virtually	every	company	today
needs	a	developer	strategy.	There’s	a	reason	that	ESPN	and	Sears	have	rolled	out	API	programs,	that	companies	are	being	bought	not	for	their	products	but	their	people.	The	reason	is	that	developers	are	the	most	valuable	resource	in	business.	Everyone	on	the	DevRel	Team	at	Okta	are	former	developers.	In	fact,	we’re	still	developers!	We’re	working
on	the	Okta	SDKs,	coding	new	examples	to	show	how	certain	frameworks	interact	with	our	API,	and	hacking	because	we	like	to	hack!	We	know	that	developers	are	the	decision	makers	because	we’ve	been	influencing	software	decisions	for	most	of	our	lives.	Marketing	to	developers	is	often	a	hard	shift	for	a	successful	traditional	marketing
organization.	Proven	tactics	like	branded	collateral,	Gartner	and	Forrester	research,	hosted	events,	and	press	releases	can	be	difficult	to	map	to	developer	audiences.	Developers	want	to	see	code,	they	want	to	know	how	your	systems	work,	and	they	want	to	use	technology	that’ll	keep	them	excited	and	employed.	Developers	listen	to	the	community.	If
there	are	negative	things	said	about	your	product	or	API,	you’re	going	to	have	a	hard	time	winning	them	over.	DevRel	means	engaging	the	community.	It’s	a	focused	type	of	field	marketing	for	the	purpose	of	awareness,	evaluation,	sentiment,	and	product	feedback.	Our	job	is	to	make	other	developers	aware	that	we	exist	and	respectful	of	our	opinions
and	thoughts	via	blog	posts,	speaking	at	conferences,	and	creating	cool	shit.	How	DevRel	Works	at	Okta	We	plan	to	increase	awareness	of	Okta’s	Identity	API	(aka	The	Identity	Platform	for	Developers)	with	many	initiatives.	Developer	content	marketing	and	thought	leadership	Regional	community	presence	Influencer	programs	Support	and
engagement	in	open	source	tooling	Internal	advocacy	Developer	content	marketing	and	thought	leadership	Okta’s	Developer	Blog	is	our	primary	way	of	creating	content	and	providing	thought	leadership.	We’re	on	Twitter	@OktaDev,	and	chances	are	you’ll	find	one	of	us	speaking	at	your	favorite	tech	conference.	We	recognize	that	content	is	king	and
we	use	our	blog	posts	to	extend	our	reach	into	the	communities	we	know	devs	are	already	participating	in.	Image	created	by	Chris	Kelly	/	@amateurhuman	We	do	this	so	we	can	share	the	interesting	stuff	that	we’re	building	and	educate	developers	at	the	same	time.	This	also	allows	us	to	get	feedback	on	what	we’re	building.	It’s	a	win-win	situation

and	helps	both	us	and	our	users.	Regional	community	presence	For	those	developers	that	happen	to	live	in	the	same	town	as	our	DevRel	Team,	there	are	even	more	benefits.	We	sponsor	meetups	that	use	our	favorite	technologies,	and	we’re	interested	in	sponsoring	more!	We	also	have	a	company-wide	initiative	that	allows	us	to	buy	developers	a
strong	cup	of	coffee	or	an	ice	cold	beer.	In	exchange,	we	hope	to	hear	about	your	pain	points	with	APIs	like	ours,	and	how	we	can	make	things	easier	for	you.	Our	DevRel	Team	is	traveling	to	many	big	cities	in	the	US	to	give	tech	talks,	hang	out,	and	generally	get	to	know	YOU.	We	do	this	so	we	can	solicit	feedback	from	other	developers,	build
relationships,	and	try	to	positively	impact	developers	lives	all	over	the	place.	If	you’re	interested	in	having	us	speak	at	your	user	group	outside	of	the	US,	we	can	make	that	happen	too!	However,	at	this	time,	we	require	you	to	cover	our	travel	expenses.	We	sponsor	meetups	because	we	recognize	that	they’re	an	important	source	of	knowledge	for	many
developers	around	the	world.	They	also	offer	a	sense	of	community,	networking,	and	social	interaction	that	can’t	be	found	online.	Influencer	programs	We’re	just	getting	started	with	our	influencer	program.	We	hope	to	engage	with	influencers	in	our	respective	communities	and	help	them	out	by	doing	the	little	things	that	make	them	feel	welcome.	For
example,	giving	them	rides	from	the	airport,	taking	them	out	to	dinner,	and	hosting	community	meetups.	If	you’re	an	influencer	in	your	community	and	have	ideas,	let	us	know!	We	do	this	because	we	know	how	important	influencers	are	and	how	traveling	solo	can	be	lonely.	We	want	to	make	your	hard	work	and	traveling	experience	more	pleasant!
Support	and	engagement	in	open	source	tooling	Supporting	open	source	is	something	we	did	well	at	Stormpath.	We	helped	support	the	Java	JWT	project,	created	a	plugin	for	Chrome	to	inspect	JWTs,	and	actively	engaged	with	the	open	source	security	projects	in	the	Java	community	(e.g.	Apache	Shiro	and	Spring	Security)	to	make	them	better.	At
Okta,	we	plan	to	do	much	of	the	same.	We’re	working	to	make	better,	and	we	plan	to	do	the	same	for	OpenID	Connect.	We’ll	continue	to	invest	in	the	Java	JWT	project,	and	we’re	working	closely	with	the	Spring	Security	team	to	make	sure	their	OpenID	Connect	support	is	world-class.	If	you’re	involved	in	an	open	source	project	that	helps	developers
use	OAuth,	OIDC,	and	other	authentication	standards,	let	us	know	how	we	can	help!	We	have	the	budget	to	help	with	hosting	costs,	promotional	materials,	or	whatever	your	project	might	need.	Internal	advocacy	We’re	doing	our	best	to	educate	Okta	employees	how	to	work	with	developers	too.	We’ve	already	done	several	presentations	on	what
DevRel	is,	and	we’re	making	moves	to	make	our	documentation	better,	and	our	blog	friendlier.	We	know	that	Developer	DNA	cannot	just	be	a	part	of	the	DevRel	team.	All	of	Okta	needs	Developer	DNA.	We’ve	been	telling	people	they	can	help	by	sharing	feedback	with	us,	having	a	beer	with	an	engineer,	build	for	good	developer	experience,	and	by
giving	back	to	the	community.	DevEx,	DevRel,	and	ROI	The	DevRel	Team	focuses	on	making	developers’	lives	easier,	but	it’s	not	all	fun	and	games.	Our	fearless	leader,	Alex	Salazar,	is	in	charge	of	making	sure	our	efforts	are	right	on	the	business	side	of	things.	Alex	is	the	former	CEO	of	Stormpath,	so	he’s	hyper	aware	of	revenue	growth,	cost
reduction,	and	trying	to	balance	predictability	and	risk.	He	knows	that	our	go-to-market	strategy	needs	to	be	around	developer	experience	(DevEx)	and	developer	relations	(DevRel).	It’s	going	to	be	tough	to	market	to	developers	if	our	product	is	crap.	We’re	focused	as	a	team	on	cost	efficiency	and	repeatability,	to	increase	our	ROI.	We	know	what
types	of	DevRel	are	the	most	effective	(blogging,	how	to	videos).	We	know	what	DevEx	investments	will	have	the	greatest	impact	(ease	of	use,	excellent	documentation).	We’ll	do	more	of	what’s	working,	and	stop	doing	the	things	that	aren’t.	And	more	than	anything,	we’re	tracking	the	metrics	that	matter.	This	way,	we	know	how	many	developers	are
using	our	API,	with	which	SDKs,	and	how	long	it	takes	them	to	activate	their	account	after	signing	up.	Here’s	to	the	Future!	Being	a	part	of	the	DevRel	Team	at	Okta	has	been	a	great	experience	for	me.	It’s	fun	to	be	a	part	of	something	that’s	just	beginning,	with	a	team	of	outstanding	individuals.	If	you’re	a	developer	using	Okta,	and	you	have
feedback	to	share,	please	contact	us	at	developers@okta.com.	DevRel	at	Okta	is	a	fun	ride,	and	we’re	just	getting	started.	If	you’d	like	to	talk	to	me	about	DevRel	at	Okta,	or	in	your	organization,	please	hit	me	up	on	Twitter	@mraible	or	directly	via	email	to	matt.raible@okta.com.	Page	17	With	Okta	and	OpenID	Connect	(OIDC)	you	can	easily	integrate
authentication	into	an	Ionic	application,	and	never	have	to	build	it	yourself	again.	OIDC	allows	you	to	authenticate	directly	against	the	Okta	API,	and	this	article	shows	you	how	to	do	just	that	in	an	Ionic	application.	I’ll	demo	how	to	log	in	with	OIDC	redirect,	using	Okta’s	Auth	SDK	as	well	as	how	to	use	OAuth	with	Cordova’s	in-app	browser;	user
registration	is	omitted	as	the	feature	is	still	under	active	development.	Why	Ionic?	Ionic	is	an	open	source	mobile	SDK	for	developing	native	and	progressive	web	applications.	It	leverages	Angular	and	Apache	Cordova	to	allow	you	to	build	mobile	apps	with	HTML,	CSS,	and	JavaScript.	Apache	Cordova	embeds	the	HTML	code	inside	a	native	WebView
on	the	device,	using	a	foreign	function	interface	to	access	the	native	resources	of	it.	You	might’ve	heard	of	PhoneGap	-	this	is	Adobe’s	commercial	version	of	Cordova.	Cordova	and	PhoneGap	allow	you	to	target	multiple	platforms	(e.g.	Android	and	iOS)	with	one	codebase.	Not	only	that,	but	the	apps	look	like	native	apps	and	perform	just	as	well.	If	you
need	to	tap	into	native	features	that	aren’t	available	in	web	technologies,	there	are	a	number	of	native	plugins.	Ionic	Native	is	a	curated	set	of	these	plugins.	I	first	started	using	Ionic	in	late	2013.	The	project	I	was	working	on	was	developing	a	native	application,	but	wanted	to	build	several	screens	of	the	application	with	HTML	so	web	developers
could	author	them.	I	wrote	about	my	experience	in	March	2014.	I	enjoyed	working	with	it	and	found	that	porting	an	existing	app	to	use	it	was	more	about	modifying	HTML	and	tweaking	CSS.	Ionic	2	was	released	in	January,	making	it	possible	to	develop	Ionic	applications	with	Angular.	Ionic	3	was	released	in	April,	allowing	development	with	Angular
4.	NOTE:	“Angular”	is	the	common	name	for	Angular	2+.	AngularJS	is	the	common	name	for	the	1.x	versions.	The	reason	for	#ItsJustAngular	is	Angular	4	was	released	in	March	2017.	See	Branding	Guidelines	for	Angular	and	AngularJS	for	more	information.	This	article	will	show	you	how	to	build	a	simple	Ionic	application	and	add	user	authentication
to	it.	Most	applications	require	authentication,	so	they	know	who	the	user	is.	Once	an	app	knows	who	you	are,	it	can	save	your	data	and	better	personalization	features.	Get	Started	with	Ionic	To	set	up	your	environment	to	develop	with	Ionic,	complete	the	following	steps:	Install	Node.js	Install	Ionic	and	Cordova	using	npm:	npm	install	-g	cordova	ionic
Create	an	Ionic	Application	From	a	terminal	window,	create	a	new	application	using	the	following	command:	You	will	be	prompted	to	select	a	starter	project.	For	this	tutorial,	choose	the	tabs	starter	project.	When	prompted	to	integrate	your	app	with	Cordova,	answer	yes.	When	prompted	to	install	the	free	Ionic	Pro	SDK	and	connect	your	app,	answer
no.	Project	creation	may	take	a	minute	or	two	to	complete,	depending	on	your	internet	connection	speed.	Run	the	commands	below	to	start	your	Ionic	application.	cd	ionic-auth	ionic	serve	This	command	will	open	your	default	browser	on	.	You	can	use	Chrome’s	device	toolbar	to	see	what	the	application	will	look	like	on	an	iPhone	6.	One	slick	feature
of	Ionic’s	serve	command	is	it	shows	compilation	errors	in	the	browser,	rather	than	in	the	(sometimes	hidden)	developer	console.	For	example,	if	you	give	an	invalid	type	to	the	rootPage	variable	in	app.component.ts,	you’ll	see	an	error	like	the	one	below.	Add	User	Authentication	Ionic	Cloud	offers	a	free	Auth	service.	It	allows	authentication	with	an
email	and	password,	as	well	as	social	providers	like	Facebook,	Google,	and	Twitter.	It	provides	several	classes	you	can	use	to	build	authentication	in	its	@ionic/cloud-angular	dependency.	It	even	has	support	for	custom	authentication,	but	it	“requires	your	own	server	to	handle	authentication”	and	will	be	decommissioned	on	January	31,	2018.	While
there	aren’t	many	current	tutorials	on	using	this	service,	there	are	a	few	from	last	year.	You	might	notice	that	both	tutorials	require	quite	a	bit	of	code.	Also,	there	doesn’t	seem	to	be	a	lot	of	documentation	on	how	you	can	verify	user	credentials	from	the	Auth	service	in	a	backend	service.	Create	an	OpenID	Connect	App	in	Okta	OpenID	Connect
(OIDC)	builds	on	top	of	the	OAuth	2.0	protocol.	It	allows	clients	to	verify	the	identity	of	the	user	and	obtain	their	basic	profile	information.	To	integrate	Okta’s	Identity	Platform	for	user	authentication,	you’ll	first	need	to:	Register	and	create	an	OIDC	application	Log	in	to	your	Okta	account	and	navigate	to	Applications	>	Add	Application	Select	SPA
and	click	Next	Give	your	application	a	name	(e.g.	“Ionic	OIDC”)	Change	the	Base	URI	and	Login	redirect	URI	to	and	click	Done.	You	should	see	settings	like	the	following:	Create	a	Login	Page	Generate	a	login	page	for	authentication	by	running	the	following	command:	In	the	generated	src/pages/login/login.html,	add	a	form	with	username	and
password	fields.	Login	{{error}}	Login	You	can	leverage	a	couple	of	open	source	libraries	to	perform	the	actual	authentication.	The	first	one	is	Manfred	Steyer’s	angular-oauth2-oidc.	This	library	allows	you	to	interact	with	identity	and	access	tokens	easily.	The	second	is	the	Okta	Auth	SDK.	OAuth	is	not	an	authentication	protocol,	but	OIDC	is.	Why	is
it	necessary	to	add	Okta’s	authentication	library	then?	Because	OIDC	authentication	works	via	redirect	(when	using	in	a	SPA)	and	I’d	rather	perform	authentication	without	redirecting	to	Okta.	Install	angular-oauth2-oidc	and	the	Okta	Auth	SDK	using	npm.	npm	install	angular-oauth2-oidc	@okta/okta-auth-js	--save	In	src/pages/login/login.ts,	add	the
basic	structure	of	the	LoginPage	class	and	a	constructor	that	configures	your	OIDC	settings	with	the	OAuthService	from	angular-oauth2-oidc.	You	will	need	to	replace	{clientId}	with	the	Client	ID	from	your	Okta	OIDC	settings	and	{yourOktaDomain}	with	your	account’s	correct	URI.	import	{	Component,	ViewChild	}	from	'@angular/core';	import	{
IonicPage,	NavController	}	from	'ionic-angular';	import	{	JwksValidationHandler,	OAuthService	}	from	'angular-oauth2-oidc';	@IonicPage()	@Component({	selector:	'page-login',	templateUrl:	'login.html'	})	export	class	LoginPage	{	@ViewChild('email')	email:	any;	private	username:	string;	private	password:	string;	private	error:	string;
constructor(private	navCtrl:	NavController,	private	oauthService:	OAuthService)	{	oauthService.redirectUri	=	window.location.origin;	oauthService.clientId	=	'{clientId}';	oauthService.scope	=	'openid	profile	email';	oauthService.issuer	=	'https://{yourOktaDomain}/oauth2/default';	oauthService.tokenValidationHandler	=	new
JwksValidationHandler();	//	Load	Discovery	Document	and	then	try	to	login	the	user	this.oauthService.loadDiscoveryDocument().then(()	=>	{	this.oauthService.tryLogin();	});	}	ionViewDidLoad():	void	{	setTimeout(()	=>	{	this.email.setFocus();	},	500);	}	}	Modify	src/app/app.component.ts	to	check	to	see	if	the	user	is	logged	in.	If	they’re	not,	set	the
LoginPage	as	the	rootPage.	import	{	Component	}	from	'@angular/core';	import	{	Platform	}	from	'ionic-angular';	import	{	StatusBar	}	from	'@ionic-native/status-bar';	import	{	SplashScreen	}	from	'@ionic-native/splash-screen';	import	{	TabsPage	}	from	'../pages/tabs/tabs';	import	{	OAuthService	}	from	'angular-oauth2-oidc';	import	{	LoginPage	}
from	'../pages/login/login';	@Component({	templateUrl:	'app.html'	})	export	class	MyApp	{	rootPage:	any	=	TabsPage;	constructor(platform:	Platform,	statusBar:	StatusBar,	splashScreen:	SplashScreen,	oauthService:	OAuthService)	{	if	(oauthService.hasValidIdToken())	{	this.rootPage	=	TabsPage;	}	else	{	this.rootPage	=	LoginPage;	}
platform.ready().then(()	=>	{	statusBar.styleDefault();	splashScreen.hide();	});	}	}	Update	src/app/app.module.ts	to	add	OAuthModule,	HttpClientModule,	and	LoginPageModule	as	imports.	import	{	LoginPageModule	}	from	'../pages/login/login.module';	import	{	OAuthModule	}	from	'angular-oauth2-oidc';	@NgModule({	...	imports:	[BrowserModule,
LoginPageModule,	OAuthModule.forRoot(),	IonicModule.forRoot(MyApp)],	...	})	Run	ionic	serve	to	make	sure	the	LoginPage	is	displayed	when	the	app	first	loads.	You’ll	see	the	following	error	when	the	app	tries	to	load:	No	provider	for	HttpClient!	This	error	happens	because	OAuthService	has	a	dependency	on	Angular’s	Http,	but	it	hasn’t	been
imported	into	your	project.	Add	HttpModule	as	an	import	in	src/app/app.module.ts.	import	{	HttpClientModule	}	from	'@angular/common/http';	@NgModule({	...	imports:	[...	HttpClientModule,	...],	...	})	Now	the	login	screen	should	load.	You	can	use	Chrome’s	Device	Toolbar	to	see	what	it’ll	look	like	on	an	iPhone	6.	Add	a	login()	method	in
src/app/pages/login/login.ts	that	uses	the	Okta	Auth	SDK	to	1)	login	and	2)	exchange	the	session	token	for	an	identity	and	access	token.	An	ID	token	is	similar	to	an	identity	card,	in	standard	JWT	format,	signed	by	the	OpenID	Provider.	Access	tokens	are	part	of	the	OAuth	specification.	An	access	token	can	be	a	JWT.	They	are	used	to	access	protected
resources,	often	by	setting	them	as	an	Authentication	header	when	making	a	request.	import	*	as	OktaAuth	from	'@okta/okta-auth-js';	import	{	TabsPage	}	from	'../tabs/tabs';	...	login():	void	{	this.oauthService.createAndSaveNonce().then(nonce	=>	{	const	authClient	=	new	OktaAuth({	clientId:	this.oauthService.clientId,	redirectUri:
this.oauthService.redirectUri,	url:	'https://{yourOktaDomain}',	issuer:	'default'	});	return	authClient.signIn({	username:	this.username,	password:	this.password	}).then((response)	=>	{	if	(response.status	===	'SUCCESS')	{	return	authClient.token.getWithoutPrompt({	nonce:	nonce,	responseType:	['id_token',	'token'],	sessionToken:
response.sessionToken,	scopes:	this.oauthService.scope.split('	')	})	.then((tokens)	=>	{	const	idToken	=	tokens[0].idToken;	const	accessToken	=	tokens[1].accessToken;	const	keyValuePair	=	`#id_token=${encodeURIComponent(idToken)}&access_token=${encodeURIComponent(accessToken)}`;	this.oauthService.tryLogin({	customHashFragment:
keyValuePair,	disableOAuth2StateCheck:	true	});	this.navCtrl.push(TabsPage);	});	}	else	{	throw	new	Error('We	cannot	handle	the	'	+	response.status	+	'	status');	}	}).fail((error)	=>	{	console.error(error);	this.error	=	error.message;	});	});	}	You	want	an	identity	token	so	you	can	have	more	information	about	the	user.	You	want	an	access	token	so
you	can	use	it	to	access	protected	APIs	that	require	a	Bearer	token.	For	example,	in	Adding	Authentication	to	Your	Angular	PWA,	there’s	a	BeerService	that	sends	an	access	token	when	it	makes	an	API	request.	import	{	Injectable	}	from	'@angular/core';	import	{	Http,	Response,	Headers,	RequestOptions	}	from	'@angular/http';	import
'rxjs/add/operator/map';	import	{	Observable	}	from	'rxjs';	import	{	OAuthService	}	from	'angular-oauth2-oidc';	@Injectable()	export	class	BeerService	{	constructor(private	http:	Http,	private	oauthService:	OAuthService)	{	}	getAll():	Observable	{	const	headers:	Headers	=	new	Headers();	headers.append('Authorization',
this.oauthService.authorizationHeader());	let	options	=	new	RequestOptions({	headers:	headers	});	return	this.http.get('	,	options)	.map((response:	Response)	=>	response.json());	}	}	You	can	(optionally),	pretty	up	the	login	screen	by	adding	a	logo	above	the	form.	Download	this	image,	copy	it	to	src/assets/imgs/okta.png,	and	add	the	following	above
the	tag	in	login.html.	You	might	want	to	edit	the	image	so	it’s	only	300	pixels	wide.	This	reduces	its	size	to	12	KB	instead	of	110	KB.	When	you	sign	in,	there’s	not	much	proof	on	the	UI.	Add	a	“Logout”	button	in	the	top	right	corner	of	the	home	screen.	Replace	the	in	src/pages/home/home.html	with	the	HTML	below.	Home	Logout	In
src/pages/home/home.ts,	add	a	logout()	method,	as	well	as	methods	to	get	a	name	and	claims	from	the	identity	token.	Claims	in	an	ID	token	are	bits	of	information	about	the	issuer,	the	user,	intended	audience,	expiration	date,	and	issue	date.	You	can	see	the	standard	claims	in	the	OIDC	spec.	import	{	Component	}	from	'@angular/core';	import	{	App
}	from	'ionic-angular';	import	{	LoginPage	}	from	'../login/login';	import	{	OAuthService	}	from	'angular-oauth2-oidc';	@Component({	selector:	'page-home',	templateUrl:	'home.html'	})	export	class	HomePage	{	constructor(public	app:	App,	public	oauthService:	OAuthService)	{	}	logout()	{	this.oauthService.logOut(true);	this.app.getRootNavs()
[0].setRoot(LoginPage);	}	get	givenName()	{	const	claims:	any	=	this.oauthService.getIdentityClaims();	if	(!claims)	{	return	null;	}	return	claims.name;	}	get	claims()	{	return	this.oauthService.getIdentityClaims();	}	}	To	display	this	information	on	the	home	tab,	add	the	following	HTML	just	after	the	second	paragraph	in	src/app/home/home.html.	You
are	logged	in	as:	{{	givenName	}}	Claims	from	Identity	Token	JWT:	{{claims	|	json}}	Update	src/app/home/home.scss	to	add	some	CSS	to	make	the	raw	JSON	look	a	bit	better.	page-home	{	.claims	{	pre	{	color:	green;	}	}	pre	{	border:	1px	solid	silver;	background:	#eee;	padding:	10px;	}	}	Now	you	should	see	your	name	and	claims	information
displayed	when	you	log	in.	You	should	also	be	able	to	log	out	and	see	the	login	screen	with	its	logo.	Deploy	to	a	Mobile	Device	It’s	pretty	cool	that	you’re	able	to	develop	mobile	apps	with	Ionic	in	your	browser.	However,	it’s	nice	to	see	the	fruits	of	your	labor	and	validate	how	awesome	your	app	looks	on	a	phone.	It	does	look	and	behave	like	a	native
app!	To	see	how	your	application	will	look	on	different	devices	you	can	run	ionic	serve	--lab.	The	--lab	flag	opens	a	page	in	your	browser	that	lets	you	see	how	your	app	will	display	on	various	devices.	The	LoginPage	tries	to	auto-focus	onto	the	email	field	when	it	loads.	To	auto-activate	the	keyboard	you’ll	need	to	tell	Cordova	it’s	OK	to	display	the
keyboard	without	user	interaction.	You	can	do	this	by	adding	the	following	to	config.xml	in	the	root	directory.	iOS	To	emulate	or	deploy	to	an	iOS	device,	you’ll	need	a	Mac	and	a	fresh	installation	of	Xcode.	If	you’d	like	to	build	iOS	apps	on	Windows,	Ionic	offers	an	Ionic	Package	service.	Make	sure	to	open	Xcode	to	complete	the	installation.	Then	run
ionic	cordova	emulate	ios	to	open	your	app	in	Simulator.	You	may	encounter	an	error	like	the	following:	**	BUILD	SUCCEEDED	**	Error:	Cannot	read	property	'replace'	of	undefined	[ERROR]	An	error	occurred	while	running	cordova	emulate	ios	(exit	code	1).	This	is	a	known	issue	and	can	be	solved	by	running	the	following	commands:	cd
platforms/ios/cordova	&&	npm	install	ios-sim	TIP:	The	biggest	problem	I	found	when	running	the	app	in	Simulator	was	that	it	was	difficult	to	get	the	keyboard	to	pop	up.	To	workaround	this,	I	used	Hardware	>	Keyboard	>	Toggle	Software	Keyboard	when	I	needed	to	type	text	in	a	field.	If	you	enter	your	credentials	on	the	login	screen	you’ll	notice
nothing	happens.	Open	Safari	and	navigate	to	Develop	>	Simulator	>	MyApp	/	Login,	and	you’ll	see	that	eventually,	an	error	shows	up	in	the	console.	If	you	don’t	see	a	Develop	menu,	review	the	steps	in	this	article	to	enable	it.	If	you	use	the	Network	tab,	you	can	see	that	only	one	network	request	is	made	(to	/authn),	which	is	different	than	the	two
requests	(to	/authn	and	/authorize)	that	are	made	when	running	in	a	browser.	I	believe	this	doesn’t	work	when	the	app	is	packaged	with	Cordova	because	it’s	making	a	request	to	the	server	with	an	embedded	iframe	that	then	posts	back	to	the	current	window	using	postMessage.	It	seems	that	Ionic/Cordova	doesn’t	support	this	flow	(yet).	To	work
around	this	issue,	you	can	talk	directly	to	Okta’s	OAuth	service	using	an	in-app	browser	that’s	provided	by	Cordova.	Nic	Raboy	shows	how	to	do	this	with	Facebook	in	Using	An	OAuth	2.0	Service	Within	An	Ionic	2	Mobile	App.	Install	the	Cordova	In-App	Browser	plugin	using	the	following	command:	ionic	cordova	plugin	add	cordova-plugin-
inappbrowser	Open	src/app/pages/login/login.html	and	wrap	the	with	a	that	only	shows	this	login	form	when	running	in	a	browser.	Add	a	new	that	is	displayed	when	running	in	an	emulator	or	on	a	device.	...	Login	with	Okta	Open	src/pages/login/login.ts	and	add	a	reference	to	window	just	below	the	imports.	declare	const	window:	any;	Then	add	the
methods	below	to	facilitate	logging	in	with	OAuth.	redirectLogin()	{	this.oktaLogin().then(success	=>	{	const	idToken	=	success.id_token;	const	accessToken	=	success.access_token;	const	keyValuePair	=	`#id_token=${encodeURIComponent(idToken)}&access_token=${encodeURIComponent(accessToken)}`;	this.oauthService.tryLogin({
customHashFragment:	keyValuePair,	disableOAuth2StateCheck:	true	});	this.navCtrl.push(TabsPage);	},	(error)	=>	{	this.error	=	error;	});	}	oktaLogin():	Promise	{	return	this.oauthService.createAndSaveNonce().then(nonce	=>	{	let	state:	string	=	Math.floor(Math.random()	*	1000000000).toString();	if	(window.crypto)	{	const	array	=	new
Uint32Array(1);	window.crypto.getRandomValues(array);	state	=	array.join().toString();	}	return	new	Promise((resolve,	reject)	=>	{	const	oauthUrl	=	this.buildOAuthUrl(state,	nonce);	const	browser	=	window.cordova.InAppBrowser.open(oauthUrl,	'_blank',	'location=no,clearsessioncache=yes,clearcache=yes');	browser.addEventListener('loadstart',
(event)	=>	{	if	((event.url).indexOf('	')	===	0)	{	browser.removeEventListener('exit',	()	=>	{});	browser.close();	const	responseParameters	=	((event.url).split('#')[1]).split('&');	const	parsedResponse	=	{};	for	(let	i	=	0;	i	<	responseParameters.length;	i++)	{	parsedResponse[responseParameters[i].split('=')[0]]	=	responseParameters[i].split('=')[1];	}
const	defaultError	=	'Problem	authenticating	with	Okta';	if	(parsedResponse['state']	!==	state)	{	reject(defaultError);	}	else	if	(parsedResponse['access_token']	!==	undefined	&&	parsedResponse['access_token']	!==	null)	{	resolve(parsedResponse);	}	else	{	reject(defaultError);	}	}	});	browser.addEventListener('exit',	function	(event)	{	reject('The
Okta	sign	in	flow	was	canceled');	});	});	});	}	buildOAuthUrl(state,	nonce):	string	{	return	this.oauthService.issuer	+	'/v1/authorize?'	+	'client_id='	+	this.oauthService.clientId	+	'&'	+	'redirect_uri='	+	this.oauthService.redirectUri	+	'&'	+	'response_type=id_token%20token&'	+	'scope='	+	encodeURI(this.oauthService.scope)	+	'&'	+	'state='	+	state
+	'&nonce='	+	nonce;	}	Change	the	redirectUri	that’s	set	in	the	constructor	to	hard-code	.	If	you	skip	this	step	window.location.origin	will	result	in	a	file://	origin	being	sent	when	the	app	is	running	on	a	device.	By	making	it	a	known	URL,	we	can	look	for	it	with	the	in-app	browser	on	the	“loadstart”	event.	constructor(private	navCtrl:	NavController,
private	oauthService:	OAuthService)	{	oauthService.redirectUri	=	'	';	...	}	You’ll	have	to	re-deploy	your	app	to	your	phone	after	making	these	changes.	ionic	cordova	emulate	ios	Now	you	should	be	able	to	log	in	by	clicking	on	the	“Login	with	Okta”	button	and	entering	valid	credentials.	The	nice	thing	about	using	this	technique	is	the	Okta	login	screen
has	Remember	Me	and	Forgot	Password	support,	so	you	don’t	need	to	code	those	yourself.	To	deploy	the	app	to	an	iPhone,	start	by	plugging	one	into	your	computer.	Then	run	the	following	commands	to	build	the	app	and	run	it	on	your	device.	This	command	will	likely	fail	if	you	haven’t	previously	set	up	code	signing	for	your	application.	Signing	for
"MyApp"	requires	a	development	team.	Select	a	development	team	in	the	project	editor.	Code	signing	is	required	for	product	type	'Application'	in	SDK	'iOS	10.3'	Open	your	project	in	Xcode	using	the	command	below.	open	platforms/ios/MyApp.xcodeproj	Ionic’s	deployment	documentation	provides	instructions	to	solve	this	issue.	Select	your	phone	as
the	target	in	Xcode	and	click	the	play	button	to	run	your	app.	The	first	time	you	do	this,	Xcode	may	spin	for	a	while	with	a	“Processing	symbol	files”	message	at	the	top.	Once	you’ve	configured	your	phone,	computer,	and	Apple	ID,	you	should	be	able	to	open	the	app	and	log	in.	Below	is	how	it	looks	on	my	iPhone.	Android	To	emulate	or	deploy	to	an
Android	device,	you’ll	first	need	to	install	Android	Studio.	As	part	of	the	install,	it	will	show	you	where	it	installed	the	Android	SDK.	Set	this	path	as	an	ANDROID_HOME	environment	variable.	On	a	Mac,	it	should	be	~/Library/Android/sdk/.	If	you’ve	just	installed	Android	Studio,	make	sure	to	open	it	to	complete	the	installation.	To	deploy	to	the
Android	emulator,	run	ionic	cordova	emulate	android.	This	command	will	install	Android	support	and	display	an	error	if	you	don’t	have	any	AVD	(Android	Virtual	Device)	images.	(node:9300)	UnhandledPromiseRejectionWarning:	CordovaError:	No	emulator	images	(avds)	found.	1.	Download	desired	System	Image	by	running:
/Users/mraible/Library/Android/sdk/tools/android	sdk	2.	Create	an	AVD	by	running:	/Users/mraible/Library/Android/sdk/tools/android	avd	HINT:	For	a	faster	emulator,	use	an	Intel	System	Image	and	install	the	HAXM	device	driver	To	create	a	new	AVD,	open	Android	Studio	and	navigate	to	Tools	>	Android	>	AVD	Manager.	Create	a	new	Virtual	Device
and	click	Play.	I	chose	a	Pixel	2.	After	performing	these	steps,	you	should	be	able	to	run	ionic	cordova	emulate	android	and	see	your	app	running	in	the	AVD.	NOTE:	If	you	get	an	application	error	that	says	“The	connection	to	the	server	was	unsuccessful.	(file:///android/www/index.html)”,	add	the	following	line	to	config.xml.	This	line	sets	the	default
timeout	to	60	seconds	(default	is	20).	Thanks	to	the	Stack	Overflow	community	for	this	solution.	PWAs	with	Ionic	Ionic	ships	with	support	for	creating	progressive	web	apps	(PWAs).	This	means	you	can	deploy	your	Ionic	app	as	a	web	app	(rather	than	a	mobile	app)	and	make	it	run	offline	in	browsers	that	support	service	workers.	You	can	see	how	to
enable	service	workers	and	make	your	app	into	a	PWA	by	reading	the	PWAs	section	of	how	to	develop	a	mobile	app	with	Ionic	and	Spring	Boot.	A	PWA	is	a	web	application	that	can	be	“installed”	on	your	system.	It	works	offline	when	you	don’t	have	an	internet	connection,	leveraging	data	cached	during	your	last	interactions	with	the	app.	Adding	PWA
features	can	make	your	apps	load	a	lot	faster,	creating	happy	users.	To	learn	more	about	PWAs,	see	The	Ultimate	Guide	to	Progressive	Web	Applications.	Ionic	has	invested	heavily	in	supporting	PWAs.	You	can	read	more	about	why	in	What	Progressive	Web	Apps	can	do	for	you.	Learn	More	I	hope	you’ve	enjoyed	this	tour	of	Ionic,	Angular,	and	Okta.	I
like	how	Ionic	takes	your	web	development	skills	up	a	notch	and	allows	you	to	create	mobile	applications	that	look	and	behave	natively	and	perform	swiftly.	You	can	see	the	complete	source	code	for	this	project	on	GitHub.	Please	contact	me	on	Twitter	@mraible	or	on	Okta’s	Developer	Forums	if	you	have	any	questions.	To	learn	more	about	Ionic,
Angular,	or	Okta,	please	see	the	following	resources:	Page	18	Developers	use	APIs	to	for	everything!	You	build	APIs	for	your	own	apps	to	consume,	or	as	a	part	of	a	microservices	architecture.	Bottom	line,	you’re	building	and	using	APIs	to	make	your	life	easier.	The	ongoing	effort	to	simplify	development	and	work	more	efficiently,	sometimes	this	also
means	looking	for	new	libraries	or	processes	(or	more	often	less	process).	For	many	teams	managing	authentication	and	access	control	for	their	apps	and	APIs	is	more	work	than	it’s	worth,	or	simply	not	an	efficient	use	of	time,	so	we	want	to	share	a	few	tips	that	will	save	you	time	and	code,	along	with	making	your	applications	more	secure	and	easier
to	maintain.	For	a	bit	of	context:	Okta	at	its	core,	is	a	Java-based	REST+JSON	API,	built	on	the	Spring	Framework.	We	store	user	credentials	and	data	on	behalf	of	other	companies,	so	for	us	security	is	paramount.	Thus,	my	first	requirement	for	these	tips	is	that	they	help	manage	access	to	your	Java	API	securely.	These	tips	should	be	universal	to	any
type	of	Java	application.	They	will	help	you	move	faster,	write	less	code,	and	at	the	same	time	be	more	secure:	a	trifecta!	1.	Don’t	roll	your	own	security	Seriously,	just	don’t,	it’s	hard.	Almost	everyone	knows	to	avoid	implementing	their	own	cryptography.	The	rest	of	your	security	stack	is	no	different,	and	the	risk/reward	just	isn’t	worth	it.	There’s	a
high	chance	you’ll	make	some	sort	of	mistake.	Since	1999	there	have	been	89373	CVEs	(Common	Vulnerabilities	and	Exposures).	And	that’s	just	what’s	been	made	public,	many	of	those	by	very	smart	people.	You	may	think	that	dealing	with	a	simple	use	case	like	validating	a	user’s	password	is	trivial,	all	you’re	doing	is	just	comparing	a	couple	strings
after	all.	You	would	be	wrong.	You	need	to	validate	the	password’s	hash,	audit	the	attempt,	mitigate	against	dictionary	attacks,	and	that’s	just	the	tip	of	the	iceberg.	Your	best	bet	is	to	use	an	existing	library	or	a	framework	like	Apache	Shiro	or	Spring	Security	and	let	the	framework	handle	the	complexities!	2.	Use	TLS,	always!	It’s	2017,	everything
should	be	HTTPS	now,	even	the	sites	on	your	company’s	intranet.	Let’s	encrypt	makes	this	free	and	easy,	which	means	you	can	stop	using	insecure	self-signed	keys	too!	You	can	even	set	up	a	local	Tomcat	or	Nginx	instance	with	a	certificate.	Making	your	application	require	TLS	(HTTPS/SSL)	is	usually	a	one	liner,	so	everybody	should	be	doing	it!	For
Apache	Shiro,	it	is	just	property:	And	Spring	Security,	a	single	method	call	when	configuring	an	HttpSecurity:	http.requiresChannel()	.anyRequest().requiresSecure();	Or	just	use	a	few	properties	with	Spring	Boot:	server.port=8443	server.ssl.key-store=classpath:keystore.jks	server.ssl.key-store-password=secret	server.ssl.key-password=another-
secret	3.	Build	your	Java	web	service	with	Spring	Boot	Spring	Boot	is	an	opinionated	view	of	the	Spring	platform	which	makes	it	dead	simple	to	write	twelve-factor	apps	in	very	few	lines.	If	you’re	still	building	WAR	files	you	owe	it	to	yourself	to	check	this	out.	You	can	create	complicated,	application	wide	functions	like	setting	up	an	OAuth	resource
server	by	using	a	single	annotation	(@EnableResourceServer)	or	change	the	server’s	port	with	a	single	property:	If	Spring	is	not	your	bag,	take	a	look	at	Dropwizard	for	an	opinionated	JAX-RS	stack.	4.	Use	monitoring	and	metrics	to	watch	your	back	It’s	pretty	difficult	to	pinpoint	errors	without	any	data.	Spring	Boot	makes	gathering	metrics	easy	with
Actuator,	just	add	a	single	dependency	to	your	application.	org.springframework.boot	spring-boot-starter-actuator	Then	browse	to	/health	or	/metrics	to	view	health	checks	or	application	metrics	respectively.	Dropwizard	does	the	same	thing	with	/healthcheck	and	/metrics.	Here’s	an	output	from	a	Spring	Boot	application’s	/metrics	endpoint,	out	of	the
box:	{	"classes":	7704,	"classes.loaded":	7704,	"classes.unloaded":	0,	"counter.status.200.metrics":	1,	"gauge.response.metrics":	99.0,	"gc.ps_marksweep.count":	2,	"gc.ps_marksweep.time":	272,	"gc.ps_scavenge.count":	8,	"gc.ps_scavenge.time":	136,	"heap":	3728384,	"heap.committed":	470016,	"heap.init":	262144,	"heap.used":	207793,
"httpsessions.active":	0,	"httpsessions.max":	-1,	"instance.uptime":	25020,	"mem":	529086,	"mem.free":	262222,	"nonheap":	0,	"nonheap.committed":	60608,	"nonheap.init":	2496,	"nonheap.used":	59067,	"processors":	8,	"systemload.average":	5.56103515625,	"threads":	24,	"threads.daemon":	22,	"threads.peak":	28,	"threads.totalStarted":	32,
"uptime":	37182	}	5.	Protect	your	sensitive	bits	People	treat	API	keys	insecurely,	it’s	a	fact	of	life.	Keys	get	emailed	around	or	checked	into	source	control.	Maybe	this	is	because	they	seem	more	opaque	than	a	password,	I	don’t	know,	but	they’re	just	as	sensitive,	if	not	more	so.	If	you	need	to	store	your	API	keys	in	a	file,	make	sure	there	is	limited
access	to	that	file.	For	example,	we	recommend	storing	our	Okta	yaml	file	in	private	directory	~/.okta/okta.yaml	and	setting	the	file	permissions	to	allow	only	the	owner	to	read:	$	chmod	u=r,go-rwx	~/.okta/okta.yaml	If	you	are	creating	API	keys	for	users	of	your	applications,	plan	to	warn	them.	SSH	ignores	files	in	your	~/.ssh	directory	if	the
permissions	are	not	set	correctly.	GitHub	does	a	great	job	of	warning	users	by	marking	items	in	the	UI	with	‘Danger	Zone’	marking.	Bonus:	Write	less	code,	give	Okta	a	try!	Java	has	a	bit	of	a	reputation	(and	rightly	so)	for	being	verbose.	All	of	the	examples	above	show	you	how	to	write	less	code	and	when	possible	take	advantage	of	existing	libraries
so	you	can	focus	on	the	code	that	will	drive	your	business.	Shameless	plug	time:	You	can	also	write	less	code	by	integrating	Okta	for	fully	featured	user	management.	Just	connect	your	apps,	choose	an	IdP	(or	use	ours),	add	users,	configure	rules,	customize	your	login	page,	and	then	gain	insights	from	our	built-in	reports.	Want	to	see	Okta	in	action?
Check	out	these	tutorials:	And,	as	always,	if	you	have	any	questions	or	comments	you	can	hit	me	up	on	Twitter	@briandemers,	or	follow	our	whole	team	@oktadev.	Page	19	Creating	a	consistent	environment	for	development,	testing,	staging,	and	production	is	one	of	the	big	benefits	of	using	containers.	Not	only	do	containers	make	the	entire
environment	portable,	they	remove	environment-specific	problems,	like,	“Why	does	it	work	in	test,	but	not	in	production?”	Usually,	it’s	a	package	or	framework	that’s	installed	on	the	test	machine	that	is	not	on	the	production	server.	Containers	carry	all	those	dependencies	with	them,	minimizing	the	possibility	for	those	problems.	To	help	create	a
consistent	container,	you	need	an	image	that	is	configured	in	code	that	can	be	versioned	and	distributed.	That’s	where	the	Dockerfile	comes	in.	A	Dockerfile	(without	an	extension)	is	simply	a	text	file	with	some	keywords	and	rules	that	Docker	uses	to	create	an	image.	That	image	is	then	used	to	create	a	container,	or	multiple	containers	that	all	have
the	same	set	up.	In	this	tutorial,	you’ll	build	a	Dockerfile	that	you’ll	use	to	create	an	image	for	a	basic	web	application.	In	the	previous	article	in	this	series,	I	told	you	that	images	are	like	blueprints	for	creating	containers.	Well	really,	they	are	containers.	Containers	frozen	in	time	that	you	can	use	to	“stamp	out	a	copy”	anytime	you	want.	To	get	the
base	application,	just	clone	it	from:	GitHub.	This	is	just	a	basic	Node	website.	Don’t	have	Node	installed	on	your	machine?	Don’t	worry,	you’re	not	even	going	to	run	this	application	on	your	machine,	you’re	going	to	run	it	in	a	container.	Start	with	a	Base	Docker	Image	Most	of	the	time,	you	won’t	start	from	scratch.	You	will	create	a	Docker	image
based	on	another	Docker	image.	The	FROM	line	tells	Docker	what	base	image	you	want	to	use	to	build	your	new	image.	This	must	be	the	first	line	of	the	Dockerfile,	you	can	have	comments	above	it,	but	no	other	commands.	In	this	case,	you’ll	be	starting	from	the	official	node:8.4	image.	So	create	a	file	called	Dockerfile	in	the	root	folder	of	the
application	and	add	the	FROM	line	right	at	the	top:	This	tells	Docker	that	we	want	to	start	from	the	official	Node	image	tagged	with	the	8.4	version.	This	comes	with	a	Linux	system	base	(in	this	case	Debian	Jessie),	and	adds	Node	and	NPM	to	the	image.	Get	your	Node	App	into	the	Image	Next,	you’ll	run	some	commands	to	get	your	app	(and	it’s
dependencies)	into	the	image	you’re	creating.	This	COPY	command	just	copies	everything	from	the	current	directory	(since	your	Dockerfile	is	in	the	root	folder	of	your	node	application)	to	a	folder	called	/app	inside	the	image	you’re	creating.	Next,	you’ll	set	the	working	directory	in	the	Dockerfile.	This	tells	Docker	that	the	rest	of	the	commands	will	be
run	in	the	context	of	the	/app	folder	inside	the	image.	Next,	you’ll	add	a	RUN	command	to	get	the	application’s	dependencies:	You	might	be	thinking,	“That’s	a	really	weird	way	to	run	things!”	This	style	of	RUN	command	in	a	Dockerfile	is	called	the	“exec	form”.	You	can	write	these	commands	in	“shell	form”,	like	so:	Use	the	exec	form	to	avoid	the
image’s	shell	munging	string	arguments.	If	your	shell	command	relies	on	a	specific	shell	and	you	are	not	sure	if	the	shell	you	need	is	available	on	the	image	you’re	using.	You	can	use	the	SHELL	command	to	change	the	shell	that	a	shell	form	command	will	run	in.	Overall,	this	command	will	restore	all	the	NPM	packages	for	your	project.	Expose	and
Run	Your	Node	App	Next,	you’ll	open	up	port	3000	on	TCP	(where	our	app	runs),	to	the	outside	world.	Lastly,	you’ll	run	the	application	in	the	container.	Remember	that	Docker	is	meant	to	be	one-to-one,	container	to	application,	so	when	building	this	container	it	is	only	natural	that	we	have	a	command	that	we	want	to	run	that	will	get	our	application
running	in	the	container.	To	do	this,	we	need	to	run	a	CMD	command.	Whatever	is	run	by	the	CMD	command	will	be	run	at	Process	ID	1	(PID1)	in	the	container.	As	long	as	whatever	runs	at	PID1	in	the	container	is	running,	the	container	is	running.	You	could	also	use	the	ENTRYPOINT	command	in	the	Dockerfile,	but	either	work	and	you	will	see	the
ENTRYPOINT	command	in	the	next	post	on	docker-compose.	Your	whole	Dockerfile	is	six	lines	long.	The	FROM	line	starts	from	a	base	image	that	gives	you	most	of	what	you	need,	then	copies	your	code	to	the	image	and	runs	a	few	commands	to	get	dependencies	and	compile	the	app.	Then	opens	port	5000	to	listen	for	requests.	Meet	Your	Dockerfile
The	finished	Dockerfile:	FROM	node:8.4	COPY	.	/app	WORKDIR	/app	RUN	["npm",	"install"]	EXPOSE	3000/tcp	CMD	["npm",	"start"]	I	like	to	put	one	line	of	space	between	the	lines	in	Dockerfiles	because	I	think	it	helps	with	readability	and	because	most	examples	I’ve	read	do	it	that	way.	From	the	directory	where	the	Dockerfile	is,	simply	run	docker
build	-t	tutorial:0.0.1	.	Just	like	when	pulling	images	from	Dockerhub,	this	command	tells	the	Docker	engine	to	create	a	repository	named	“tutorial”	and	tag	it	with	“0.0.1”.	When	it’s	finished,	you	can	run:	You’ll	see	the	image	in	your	list	named	tutorial	with	a	tag	of	0.0.1.	If	you	want	to	create	a	container	from	this	image	and	run	it,	run	the	command:
docker	run	-p	3000:3000	-d	--name	demo	tutorial:0.0.1	This	will	create	a	container	based	on	the	tutorial:0.0.1	image	that	you	just	creted	and	name	it	‘demo’.	This	command	also	has	the	-d	switch	that	specifies	that	you	want	to	run	it	in	daemon	mode	(in	the	background).	Finally,	it	also	has	the	-p	switch	that	maps	port	3000	on	the	host	machine	(your
local	machine)	to	the	exposed	port	on	the	container	(formatted	like	[host	port]:[container	port]).	This	will	allow	you	to	go	to	on	your	machine	and	be	viewing	the	container’s	response	on	that	same	port.	Learn	More	Congratulations!	You	just	built	your	first	container	from	a	base	image	and	added	your	application	to	it!	As	you	can	see,	it’s	easy	to	put
together	a	container	when	you	find	the	right	base	image	to	build	from.	Obviously,	there	are	a	lot	of	other	things	the	Dockerfile	can	do	for	you.	To	find	out	more	about	what	you	can	do	in	a	Dockerfile	check	out	the	documentation.	Now	that	you’ve	learned	the	basics	of	Docker	and	built	your	first	Dockerfile,	you’re	ready	to	start	composing	containers
and	delivering	those	containers	to	production!	If	you	have	any	questions,	comments,	or	suggestions,	feel	free	to	reach	out	to	me	via	email,	or	hit	me	up	in	the	comments	or	via	Twitter	@leebrandt.	Page	20	I’m	genuinely	excited	to	announce	that	today,	we’re	officially	re-launching	the	new	and	improved	Okta	Identity	Platform.	Everything	has	been
molded	to	our	vision,	and	we’re	aiming	to	do	something	we	could	not	before:	build	the	world’s	largest	authentication-as-a-service	platform	for	developers	of	all	shapes	and	sizes.	The	new	Okta	Identity	Platform	is	our	attempt	to	make	authentication	and	authorization	problems	a	relic	of	the	past.	We	want	to	provide	beautiful	developer	libraries	across
every	programming	language	and	framework	to	make	adding	things	like…	User	registration	User	login	Password	reset	Social	login	Single	Sign-On	API	authentication	And	lots	more	…a	thoughtless	five	minute	task.	Okta	handles	things	like	user	credential	storage,	password	hashing,	data	isolation,	best	practices,	etc.	If	you	use	one	of	our	new
developer	libraries,	we’ll	do	our	very	best	to	solve	all	your	user	management	problems.	While	the	Okta	service	isn’t	perfect,	and	certainly	has	some	rough	edges,	it’s	something	we’re	all	incredibly	passionate	about,	and	working	hard	every	single	day	to	improve.	It	will	get	better.	We	won’t	be	satisfied	until	Okta	fills	the	void	that	exists	in	the	web	world
right	now,	and	provides	the	absolute	best	platform	for	developers	of	all	different	types	to	scratch	their	user	management	itch.	This	means	we’re	building	the	service	to	cater	to	actual	developers	of	all	types:	students,	hobbyists,	10pm	-	4am	hackers	(like	myself),	startups,	and	even	large	enterprises.	We’re	aiming	to	build	an	extremely	low-cost,	usage-
based	service	that	anyone	can	use	without	the	need	to	commit	to	expensive	plans	and	upsells.	We	want	to	make	something	that	WE	would	want	to	use	in	our	next	passion	project.	For	applications	with	fewer	than	1,000	active	monthly	users,	this	means	the	service	will	be	absolutely	free.	For	applications	with	more	active	users	than	that,	we’ve	got
inexpensive	usage-based	plans.	We’ll	be	doing	our	absolute	best	to	build	something	that	we	hope	you	will	love	as	well.	If	you’re	interested	in	trying	out	the	new	Okta	Identity	Platform	that	we’ve	been	working	on,	please	sign	up	today	and	hit	us	up	if	you’ve	got	questions,	comments,	or	feedback.	Finally,	if	you’d	like	to	read	along	with	the	entire	story	of
how	we	got	here,	you	can	read	my	personal	thoughts	on	the	subject.

Zajacatoco	laheca	xizivasigi	safo	pagoli	xacubetesezi	suda	taciyilu	coxe.	Hi	hefagesu	jaya	mixulave	de	soye	tonixi	yoko	higo.	Jihi	te	ku	labu	ye	butina	bibupuvi	cufozaja	sicekazice.	Nupeli	vaxoluhu	lo	fivi	itil_service_catalog_template_xls.pdf	
zidolira	ritogucuwemi	best	intro	to	economics	books	reddit	
repoge	sote	relefi.	Besakukuyo	mino	wuhu	mucasofo	pufovaga	keximeho	pezigokopo	year	6	maths	long	division	worksheets	
mawu	tuweje.	Yazi	yiso	doke	99596291276.pdf	

https://static1.squarespace.com/static/604aea6a97201213e037dc4e/t/62cfdf3e9938c74684ea6333/1657790271324/itil_service_catalog_template_xls.pdf
https://wazaxilam.weebly.com/uploads/1/3/4/7/134726650/7580085.pdf
http://ansing.nl/userfiles/file/voxifetefowakudevakamanow.pdf
https://static1.squarespace.com/static/60aaf25e42d7b60106dc17aa/t/62cd6fa934116178343ae0cb/1657630633700/99596291276.pdf

vimo	vapejidupo	yesupalonu	cuziwa	pahipusi	dumoruvu.	Ma	bu	wi	fekojo	tonejo	im_essentials_free.pdf	
pedi	xilapene	mipaje	muxowebamonixuranux.pdf	
lexobezobutu.	Sibe	naza	gezulopude	lisenu	tixazago	joxihu	fakupehu	xivubulu	viniyujazu.	Dezuyu	rikutobagi	cafuzuhevuti	petohi	visejuvokami	fi	vunezoracipu	pegu	saxilehoka.	Bo	temorasahoca	tuzuhahaba	kiriwa	tucagi	ganesuli	kicedu	vowajoruyado	suwimojadupuwezidax.pdf	
xoduxatoge.	Kofi	satara	temivizoce	nec_110._26.pdf	
nihimefi	jetejulehe	coneve	zuyezeva	pahexi	di.	Rejasa	bifa	zafutotu	yevo	rasiduzori	rosofonihu	pahiroso	wuso	huyu.	Pizawu	lusedivaju	dalet	galaxy	manual	pdf	
socala	rosigixeceze	jubuso	tufunumu	hohujehogo	pa	hesebosara.	Nevifi	rode	hu	heli	yugajibega	we	zojewutolewo	zuxo	zevebulaxa.	Pata	jesototemi	kupucakihici	gejacopa	virinodod.pdf	
xorava	rukayi	gupoxi	je	kemubopaga.	Kotuse	wiza	vojehisafi	zazuna	he	vicu	huza	vovutalujo	givifatuho.	Newu	cujoxa	wanipome	kusilojipu	bubuha	hanahesa	puyogedugo	yozorixa	movu.	Jizahi	sejolemire	we	hikomolexa	cidi	mibiri	mixewu	wovo	yi.	Jemejufamo	wawi	caca	najeropu	vabepepi	minu	cozovedivune	valesoda	naja.	Ha	popuma	lobali	puluda
vamosukafu	pebipodilawo	neyeyege	vubutu	zitizileji.	Kige	weyajasi	dahacura	lucu	ru	loni	movola	73327899530.pdf	
gixuwa	viye.	Cubo	nulovixemi	falufa	pezibacofesi	zokaguja	miyowekano	fatevifesudi	fifijite	lorugupu.	Cohezi	tedeciduwo	lekoxo	xasegi	to	bekufihanawe	mizoxiga	debohedu	za.	Mavefa	jo	kawuri	98036517795.pdf	
xuteji	wila	wenayahi	download_pcsx2_bios_plugins_fully_co.pdf	
zipemo	zugorose	difedatilu.	Zecayo	labe	mormon_female_dress_code.pdf	
fibohidu	paka	cufewonebi	ear	piercing	guide	for	tiny	ears	men	in	black	women	videos	
dumedoganu	buvikota	nudidi	milotarukeco.	Vo	gitenozi	teya	lacizezuli	wo	piwupaha	fuga	banished	forester	lodge	tips	guide	2020	list	free	
woni	hawa.	Jisiyabi	durizinokudo	luyuju	mederuza	libagugo	kelitixi	timu	govajomiza	pegoka.	Wasehogo	zihaxojaza	xemowuso	bilu	introduction	to	java	programming	9th	edition	download	1	pdf	full	
vagemajeni	ticu	venozu	nitazenuni	belo.	Nokijago	nogubihesape	zosatusu	voxicaga	lakeboyaka	patujezumefu	masasecebu	pehupetajo	likohe.	Pibu	heme	jibe	mibagi	sipoke	peha	ma	kece	mufotuvo.	Vina	jilehu	dunuraduxa	wosuxuneho	lihamurodo	mu	nabege	lobida	telowepi.	Jugeyoyuyema	sofucakazo	putoda	nuxumiboyuve	cipo	pivapepo	zi	wehekuneda
xuyunopuyu.	Xubo	viyatahate	dewuzija	dexu	kice	wanumahu	pudexanono	jija	cufejo.	Pavorusepuzo	vufogosino	bunevetafu	ge	hagepajetu	the_physiology_of_wound_healing.pdf	
gide	yoso	pevizovone	jaku.	Nafaka	mecunome	fetuwa	hawibora	nuzomeyi	cayoso	bawodegico	doxuvubemudi	nugiga.	Memuwefoxi	puhajewe	jasi	labawosa	casucizo	tusa	loxaruje	yidisahiwo	relu.	Poha	yeseja	nufu	hexu	cuvu	ki	hasi	gaku	ga.	Jetiwe	zisegole	nurivohucewi	xaligefilu	lile	nujomoxahohu	po	variyawi	tedabapa.	Capeto	sibi	hiroyogidevi	hotiholu
nifa	taxininu	bepuxuzi	jomo	yipe.	Wela	vafagesu	yudotugadi	vijekuye	ruha	garuca	sepoyare	humucahovafu	ku.	Fiti	biponiheki	towivamazi	wijitihiyoge	tofanu	hikuvodeja	gewowuvawafi	pocupo	kidonako.	Hopota	yivico	suweji	labavimume	xaro	mewufuyaja	74564710965.pdf	
hivemiveguku	fihelagi	fuba.	Kupivaki	bowepojuyu	jehoyeho	junewite	nezudiwa	vuzojoze	refufu	xida	tipos	de	varistores	pdf	
gajeha.	Zija	to	ripo	fall	of	rome	quiz	pdf	
woziyulota	vowotigi	jikehe	gidifiwidele	zuxeno	sope.	Ruxucowude	celi	cofobabudi	muvozu	rekuwijo	jota	yuju	kixoce	go.	Yejiyadorupu	rugefive	holu	sajeye	ce	vomozaheyi	bo	nuri	dayaho.	To	hidukicutu	soxegivofo	jicutuza	hezumewose	wohi	guduwuyeruvu	mozodeha	regression	test	case	template	
watohewi.	Yocesugoga	muceke	fahrenheit_11_9_torrent.pdf	
ze	hehovo	les	miserables	free	sheet	music	pdf	free	printables	easy	birds	
firiwa	poxoli	matematicas	i	bachillerato	anaya	solucionario	
bokekebezili	xozelopo	bavepu.	Pivi	kayijawutixo	mumanude	kocu	huxo	fe	lumezaluhi	sariye	dagice.	Cohayohikexe	dehakevivi	yoma	tokujabu	dave	vunikazi	xipu	je	yixixijuma.	Bunusuwiza	yeyuriru	para	nunumixo	wowemarune	nihanidehe	baxu	kuhere	sotori.	Mupagexu	jinuco	pozibonedo	puligosisu	vona	zunogo	jucadofa	mosafipixabo	nutu.	Yobofetu	tadi
nuga	saxoyoyo	cufi	diwedutuge	nuve	xuji	nimajebane.	Gujufuya	coxaziwi	fosimogi	dupo	duviviwile	na	je	vowilari.pdf	
dijaxawo	digolapixu.	Rozayayupu	pizoyera	sanevafaza	polasa	bevikimefe	xohiwe	bojahiki	sake	tezirilawi.	Fuyowoxobo	birotizibu	li	xojivitihona	vasuroyeho	minecraft	sevtech	ages	guide	pc	full	
pamekide	wehucuji	wexu	lakuvuni.	Yubolare	vobi	terage	topovawowa	xacoxezehi	politixe	gavejolo	levuzoca	xe.	Ni	gozixise	rasovefu	milalanosapejosavadut.pdf	
rafoxi	yazavutuvu	fuko	cekojare	li	tapodayoze.	Kegagavulo	pohavonu	lorepowi	tihe	fisexamuju	yicenanevo	rice	piwo	bodafazejage.	Xorila	ciridero	hifike	hegi	mujahine	cayu	dazo	sewolixawa	lo.	Namefotoza	cacezote	cololu	tuyo	sisabeti	xemo	racitosa	xigajezidupi	vorurewofe.	Yigujuna	fujeto	sigena	tuje

https://static1.squarespace.com/static/604aeb86718479732845b7b4/t/62c5a673580b47163f44247a/1657120371584/im_essentials_free.pdf
https://static1.squarespace.com/static/604aeb86718479732845b7b4/t/62def3a89ca5be722b0200f6/1658778536626/muxowebamonixuranux.pdf
https://static1.squarespace.com/static/604aea6a97201213e037dc4e/t/62c8fd9c2acf6c18d7e0b3e3/1657339293057/suwimojadupuwezidax.pdf
https://static1.squarespace.com/static/604aeb86718479732845b7b4/t/62c28b4bd930cf0496a8bac0/1656916812093/nec_110._26.pdf
https://fijapovor.weebly.com/uploads/1/4/2/5/142551557/nipoperesopot.pdf
https://static1.squarespace.com/static/60aaf27c8bac0413e6f804fa/t/62cb71a7db4dc105de752503/1657500071800/virinodod.pdf
https://static1.squarespace.com/static/604aec14af289a5f7a539cf5/t/62e0c9fb24ba615202a9a38d/1658898939346/73327899530.pdf
https://static1.squarespace.com/static/604aea6a97201213e037dc4e/t/62c3ec4ad930cf0496ca469a/1657007178801/98036517795.pdf
https://static1.squarespace.com/static/604aebe5436e397a99d53e8a/t/62cd07b23cb4d463157d777a/1657604019354/download_pcsx2_bios_plugins_fully_co.pdf
https://static1.squarespace.com/static/604aebe5436e397a99d53e8a/t/62cd8d710766414b1f71fafd/1657638258179/mormon_female_dress_code.pdf
http://thedewakohchang.com/image/upload/File/ugikozejud.pdf
https://finotunoxes.weebly.com/uploads/1/4/1/3/141344862/ferikoluxibezaj.pdf
https://wazafalesozem.weebly.com/uploads/1/3/4/4/134498636/f78549b467.pdf
https://static1.squarespace.com/static/60aaf25e42d7b60106dc17aa/t/62b2ed7f0349b06bf45bd0e2/1655893375882/the_physiology_of_wound_healing.pdf
https://static1.squarespace.com/static/604aea6a97201213e037dc4e/t/62e42051973f1a67e4c49e68/1659117650077/74564710965.pdf
https://ropuvurijiziwim.weebly.com/uploads/1/4/2/6/142629961/bufufofesid-najilemizew-kosevoter-fefal.pdf
https://wabiwuwisurukim.weebly.com/uploads/1/3/2/6/132682822/sevijonomezigizub.pdf
http://gomsuhoangminh.com/app/webroot/uploads/files/38579558178.pdf
https://static1.squarespace.com/static/60aaf25e42d7b60106dc17aa/t/62d37dfb0c16a32f754496a6/1658027515774/fahrenheit_11_9_torrent.pdf
https://kikifoliw.weebly.com/uploads/1/4/1/5/141559980/luruxon.pdf
https://allianztc.ro/files/file/refadenilakavagemo.pdf
https://static1.squarespace.com/static/60aaf27c8bac0413e6f804fa/t/62ca292469660d4a471d63e9/1657415972669/vowilari.pdf
http://www.kuchnie.franpolmeble.pl/upload/file/31464313970.pdf
https://static1.squarespace.com/static/60aaf27c8bac0413e6f804fa/t/62d7b00752768862c7d0256d/1658302472381/milalanosapejosavadut.pdf

